A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

quadrupole

Paper Title Other Keywords Page
MOXAGM01 Status of the Large Hadron Collider (LHC) cryogenics, controls, collider, dipole 1
 
  • F. Bordry
    CERN, Geneva
  The status of the LHC commissioning is presented. Preparation for smooth beam commissioning is going on since several years:
  1. very thorough commissioning of the highly complex hardware systems started already in 2005
  2. preparation of the LHC beam commissioning, resulting in detailed procedures for various commissioning phases with increasing beam intensity and performance
  3. preparation of the injector complex, with beam up to the end of the transfer lines between SPS and LHC.
 
slides icon Slides  
 
MOPC013 Effect of Jitter and Quadrupole Alignment Errors on SASE FEL Performance radiation, undulator, electron, simulation 94
 
  • V. G. Khachatryan, A. Tarloyan, V. M. Tsakanov
    CANDLE, Yerevan
  • W. Decking
    DESY, Hamburg
  Numerical simulations of the radiation process at the European XFEL project are presented. The impact of quadrupole misalignments on the saturation length and saturation power is investigated using the simulation codes SIMPLEX and GENESIS. The influence of trajectory steering in the presence of BPM misalignments on the FEL performance is analyzed. The study is performed for the SASE 1 undulator designed for 0.1nm radiation wavelength.  
 
MOPC068 Preliminary Characterization of the Beam Properties of the SPARC Photoinjector emittance, cathode, linac, gun 226
 
  • A. Cianchi
    INFN-Roma II, Roma
  • D. Alesini, M. Castellano, E. Chiadroni, L. Cultrera, G. Di Pirro, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, G. Gatti, B. Marchetti, E. Pace, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Mostacci
    Rome University La Sapienza, Roma
  • C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  The SPARC photoinjector is the test prototype of the recently approved SPARX project. It is used as R&D facility to perform accurate beam dynamics studies, comparing measurements and simulations. Emittance measurements at the gun exit and at the full energy has been performed and benchmarked with the simulations.  
 
MOPC086 IFMIF-EVEDA Accelerator: Beam Dump Design linac, vacuum, rfq, shielding 259
 
  • B. Brañas, F. Arranz, G. Barrera, J. M. Gómez, A. Ibarra, D. Iglesias, C. Oliver
    CIEMAT, Madrid
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.12 MW. The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. A thermomechanical analysis with ANSYS has been performed for a few materials which show good behavior from the radiological point of view. The input data are the expected beam shape and divergence at the beam dump entrance produced by the high energy beam line quadrupoles, a conical beam stop shape and the preliminary design of the cooling system. As a conclusion of the previous studies a conceptual design of the beam stop will be presented.  
 
MOPC103 Short Circuit Tests: First Step of LHC Hardware Commissioning Completion controls, extraction, dipole, monitoring 304
 
  • B. Bellesia, E. Barbero-Soto, F. Bordry, M. P. Casas Lino, G.-J. Coelingh, G. Cumer, K. Dahlerup-Petersen, J.-C. Guillaume, J. Inigo-Golfin, V. Montabonnet, D. Nisbet, M. Pojer, R. Principe, F. Rodriguez-Mateos, R. I. Saban, R. Schmidt, H. Thiesen, A. Vergara-Fernández, M. Zerlauth
    CERN, Geneva
  • A. Castaneda, I. Romera Ramirez
    CIEMAT, Madrid
  The Large Hadron Collider operation relies on 1232 superconducting dipoles with a field of 8.33T and 400 superconducting quadrupoles with a strength of 220 T/m powered at 12kA, operating in superfluid He at 1.9K. For dipoles and quadrupoles as well as for many other magnets more than 1700 power converters are necessary to feed the superconducting circuits. Between October 2005 and September 2007 the so-called short circuit tests were carried-out in the 15 underground areas where the power converters of the superconducting circuits are located. The tests were aimed at the qualification of the normal conducting components of the circuits: the power converters, the normal conducting DC cables between the power converters and the LHC cryostat, the interlocks and energy extraction systems. In addition, the correct functioning of the infrastructure systems (AC distribution, water and air cooling, control system) were validated. The final validation test for each underground area was the powering of all converters at ultimate current during 24h. This approach highlighted a few problems that were solved long before the beginning of magnet commissioning and beam operation.  
 
MOPC111 Lattice Studies for Spin-filtering Experiments at COSY and AD target, antiproton, proton, lattice 322
 
  • A. Garishvili, A. N. Nass, E. Steffens
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • A. Lehrach, B. Lorentz, R. Maier, F. Rathmann, R. Schleichert, H. Ströher
    FZJ, Jülich
  • P. Lenisa, M. Statera
    INFN-Ferrara, Ferrara
  • S. A. Martin
    UGS, Langenbernsdorf
  In the framework of the FAIR project, the PAX collaboration has proposed a research program based on polarized antiprotons. Polarized antiprotons are to be produced by spin-dependent attenuation on a polarized hydrogen target. For a better understanding of this mechanism it is planned to perform Spin-Filtering studies with protons at COSY (Jülich). In a second phase, it is envisioned to study Spin-Filtering with antiprotons at the AD (CERN). Which will allow for the determination of the total spin-dependent transverse and longitudinal cross sections. In order to achieve the required long storage times, a storage ring section has to be developed which minimizes the spin-independent losses due to Coulomb scattering. The Coulomb-loss cross section for single scattering losses at fixed energy is proportional to the acceptance angle. Therefore, at the target point the beta functions should be as small as possible. Fot the 'low-beta' section, superconducting quadrupole magnets are utilized. It is composed of two (COSY) and three (AD) SC quadrupoles on each side of the target. Results of the lattice studies and requirements for the superconducting quadrupole magnets will be discussed  
 
MOPC118 Coordination of the Commissioning of the LHC Technical Systems controls, dipole, collider, cryogenics 340
 
  • R. I. Saban, B. Bellesia, M. P. Casas Lino, C. Fernandez-Robles, M. Pojer, R. Schmidt, M. Solfaroli Camillocci, A. Vergara-Fernández
    CERN, Geneva
  The Large Hadron Collider operation relies on 1232 superconducting dipoles with a field of 8.33T and 400 superconducting quadrupoles with a strength of 220 T/m powered at 12kA, operating in superfluid He at 1.9K. For dipoles and quadrupoles as well as for many other magnets more than 1700 power converters are necessary to feed the superconducting circuits. A sophisticated magnet protection system is crucial to detect a quench and safely extract the energy stored in the circuits (about 1GJ only in one of the dipole circuits) after a resistive transition. Besides, in such complex architecture, many technical services (e.g. cooling and ventilation, technical network, electrical distribution, GSM network, controls system, etc.) have to be reliably available during commissioning. Consequently, the commissioning of the technical systems and the associated infrastructures has been carefully studied. Procedures, automatic control and analysis tools, repositories for test data, management structures for carrying out and following up the tests have been put in place. This paper briefly describes the management structure and the tools created to ensure safe, smooth and rapid commissioning.  
 
MOPC124 Ion Optical Design of SIS100 and SIS300 ion, lattice, extraction, dipole 358
 
  • J. Stadlmann, G. Franchetti, B. J. Franczak, M. Kirk, N. Pyka, A. Saa-Hernandez, P. J. Spiller
    GSI, Darmstadt
  The ion optical layout of the two synchrotrons SIS100/300 of the FAIR project is presented. SIS100 will provide high intensity ion beams of all species from H to U up to a magnetic rigidity of 100 Tm. To minimize the space charge effects and to reach the necessary ion intensities for the FAIR project SIS100 will be operated with intermediate charge state heavy ions (U28+). The ion optical layout of SIS100 has been optimized for this purpose. The layout assures the separation of beam particles which are ionized by collisions with residual gas molecules from the circulating beam. Since SIS100 and SIS300 will be installed in the same tunnel, the lattice layout of SIS300 has to follow precisely the geometry of SIS100. SIS300 will provide beams of highly charged heavy ions with a maximum rigidity of 300 Tm. In addition, it will function as a stretcher ring for SIS100. The beam transfer system from SIS100 to SIS300 is designed to fit in a single straight section of the two machines. The effect of dynamic field errors in SIS300 has been considered and the maximum tolerable error levels for the operation of SIS100, such as tracking errors and power supply ripples have been investigated.  
 
MOPC129 Lattice without Transition Energy for the Future PS2 dipole, lattice, betatron, sextupole 370
 
  • D. Trbojevic, S. Peggs
    BNL, Upton, Long Island, New York
  • Y. Papaphilippou, R. de Maria
    CERN, Geneva
  The Large Hadron Collider (LHC) will be commissioned very soon. Improvements of the LHC injection complex are considered in the upgrade possibilities. In the injection complex it is considered that the aging Proton Synchrotron (PS) would be replaced with a new fast cycling synchrotron PS2. The energy range would be from 5-50 GeV with a repetition rate of 0.3 Hz. This is a report on the PS2 lattice design using the Flexible Momentum Compaction (FMC) method*. The design is trying to fulfill many requirements: high compaction factor, racetrack shape with two long zero dispersion straight sections, circumference fixed to a value of 1346 meters (CPS2=15/77 CPS), using normal conducting magnets and avoiding the transition energy.

*D. Trbojevic et al. ”Design Method for High Energy Accelerator Without Transition Energy”, EPAC 90, Nice, June 12-16 (1990) pp. 1536-1538.

 
 
MOPP001 Beam-Based Alignment for the CLIC Decelerator alignment, simulation, lattice, dipole 547
 
  • E. Adli, D. Schulte
    CERN, Geneva
  The CLIC Drive Beam decelerator requires the beam to be transported with very small losses. Beam-based alignment is necessary in order to achieve this, and various beam-based alignment schemes have been tested for the decelerator lattice. The decelerator beam has an energy spread of up to 90%, which impacts the performance of the alignment schemes. We have shown that Dispersion-Free-Steering works well for the decelerator lattice. However, because of the transverse focusing approach, modifications of the normal DFS schemes must be applied. Tune-up scenarios for the CLIC decelerator using beam-based alignment are also discussed.  
 
MOPP002 A Study of Failure Modes in the CLIC Decelerator lattice, simulation, linac, power-supply 550
 
  • E. Adli, D. Schulte, I. Syratchev
    CERN, Geneva
  The CLIC Drive Beam decelerator is responsible for producing the RF power for the main linacs, using Power Extraction and Transfer Structures (PETS). To provide uniform power production, the beam must be transported with very small losses. In the paper failure modes for the operation of the decelerator are investigated, and the impact on beam stability, loss level and machine protection issues is presented. Quadrupole failure, PETS inhibition and PETS break down scenarios are being considered.  
 
MOPP003 Study of Abnormal Vertical Emittance Growth in ATF Extraction Line emittance, extraction, simulation, multipole 553
 
  • M. Alabau, A. Faus-Golfe
    IFIC (CSIC-UV), Valencia
  • M. Alabau, P. Bambade, J. Brossard, G. Le Meur, C. Rimbault, F. Touze
    LAL, Orsay
  • D. Angal-Kalinin, J. K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby, A. Scarfe
    UMAN, Manchester
  • S. Kuroda
    KEK, Ibaraki
  • G. R. White, M. Woodley
    SLAC, Menlo Park, California
  • F. Zimmermann
    CERN, Geneva
  Since several years, the vertical emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This long-standing problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experienced by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.  
 
MOPP005 The 2 mrad Crossing Angle Scheme for the International Linear Collider extraction, optics, multipole, linear-collider 556
 
  • R. Appleby
    UMAN, Manchester
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, S. Cavalier, G. Le Meur, F. Touze
    LAL, Orsay
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  The present baseline configuration of the ILC has a 14 mrad crossing angle between the beams at the interaction point. This allows easier extraction of the beams after collisions, but imposes on the other hand more constraints on the control of the beams prior to colliding them. Moreover, some limitations to physics capabilities arise, in particular because of the degraded very forward electromagnetic detector hermeticity and because calibration procedures for (gaseous) tracking detectors become more complex. To mitigate these problems, alternative configurations with very small crossing angles are studied. A new version of the 2 mrad layout was designed last year, based on simpler concepts and assumptions. The emphasis of this new scheme was to satisfy specifications with as few and feasible magnets as possible, in order to reduce costs. Recent progress designing several of the magnets involved and the particular vacuum chamber needed in the shared part of the beam line is reported.  
 
MOPP010 Experimental Studies on Drive Beam Generation in CTF3 linac, extraction, injection, optics 571
 
  • R. Corsini, S. Bettoni, S. Doebert, P. K. Skowronski, F. Tecker
    CERN, Geneva
  • C. Biscari, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
  The objective of the CLIC Test Facility CTF3, built at CERN by an international collaboration, is to demonstrate the main feasibility issues of the CLIC two-beam technology by 2010. CTF3 consists of a 150 MeV electron linac followed by a 42 m long delay loop, an 84 m combiner ring and a two-beam test area. One key-issue studied in CTF3 is the efficient generation of a very high current drive beam, used in CLIC as the power source for the acceleration of the main beam to multi-TeV energies. The beam current is first doubled in the delay loop and then multiplied again by a factor four in the combiner ring by interleaving bunches using transverse deflecting RF cavities. The combiner ring and the connecting transfer line have been installed and put into operation in 2007. In this paper we give the status of the commissioning, illustrate the beam optics measurements, discuss the main issues and present the results of the combination tests.  
 
MOPP015 Continuously Adjustable Permanent Magnet Quadrupole for a Final Focus coupling, permanent-magnet, multipole, dipole 583
 
  • T. Sugimoto, M. Ichikawa, Y. Iwashita, M. Yamada
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Kuroda, T. Tauchi
    KEK, Ibaraki
  A permanent magnet quadrupole with continuous strength adjustability has been fabricated. It has a five-ring-singlet structure, which was proposed by R. L.Gluckstern. Its small overall diameter allows an outgoing beamline to pass closeby. Since the permanent magnet pieces do not have any vibration source in themselves, this magnet could be used as a quadrupole in a final focus doublet. Such a quadrupole system is described.  
 
MOPP016 Collimation Aperture for the Beam Delivery System of the International Linear Collider collimation, extraction, linear-collider, emittance 586
 
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The beam delivery sytem (BDS) of the international linear collider (ILC) must provide efficient removal of beam halo particles which would cause unacceptable detector background. The collimation aperture or 'collimation depth' is designed such that synchrotron radiation from the halo emitted in the final doublet passes cleanly through the detector interaction region. The ILC BDS collimation depth for several different detector scenarios is evaluated using a semi-analytical technique.  
 
MOPP028 Technical Specification for the CLIC Two-Beam Module alignment, vacuum, linac, lattice 607
 
  • G. Riddone, H. Mainaud Durand, D. Schulte, I. Syratchev, W. Wuensch, R. Zennaro
    CERN, Geneva
  • R. Nousiainen
    HIP, University of Helsinki
  • A. Samoshkin
    JINR, Dubna, Moscow Region
  The 2-m long CLIC module comprises four decelerating structures and two quadrupoles forming a FODO cell. Each decelerating structure powers two accelerating structures. Some accelerating structures are removed at regular intervals to liberate space for a quadrupole of a FODO lattice. The present layout of the standard and special modules is presented as well as the status of the system integration. The main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) are introduced together with the major integration constraints. For the key components the specification on pre-alignment and beam-based alignment tolerances is also recalled as well as their influence on the requirements of other sub-systems. For example the required stable thermal behavior and the tight tolerances of accelerating structure (the requirements for the accelerating structure pre-alignment is 0.014 mm at 1? ) in the CLIC linac largely directly the sizing and integration of the cooling system. The paper also covers the main issues related to the module integration in the tunnel. In the last part, the critical issues and future activities are summarized.  
 
MOPP030 ATF2 Final Focus Orbit Correction and Tuning Optimisation sextupole, linear-collider, collider, dipole 613
 
  • A. Scarfe, R. Appleby
    UMAN, Manchester
  • D. Angal-Kalinin, J. K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  ATF2 is an upgrade to the ATF facility at KEK, Japan consisting of a replacement to the current ATF extraction line and the addition of a final focus section. The final focus system has been designed, and is aiming to test, the local chromaticity correction scheme as proposed for future linear colliders. The final focus system focuses the ultra-low emittance beams at the collision point in the linear collider. To provide the required small beam sizes and to maintain the beam sizes to nanometer level requires optimised orbit correction and tuning procedures. In this paper, the optimisation of the orbit correction using a global SVD method is discussed, along with the progress on final focus tuning knob analysis. The tuning algorithms used at ATF2 will provide an important feedback for future linear colliders (including the ILC and CLIC).  
 
MOPP036 Dark Current Model for ILC Main Linac linac, simulation, electron, focusing 625
 
  • N. Solyak, N. V. Mokhov, G. V. Romanov
    Fermilab, Batavia, Illinois
  • Y. I. Eidelman
    BINP SB RAS, Novosibirsk
  • W. M. Tam
    IUCF, Bloomington, Indiana
  In the ILC Main Linac the dark current electrons, generated in SRF cavity can be accelerated to hundreds of MeV before being kicked out by quadrupoles and thus will originate electromagnetic cascade showers in the surrounding materials. Some of the shower secondaries can return back into vacuum and re-accelerated again. The results of simulation of the dark current dynamics and energy deposition along the linac are discussed in paper.  
 
MOPP055 A Comparison of Tuning Strategies for a Linear Collider Damping Ring emittance, lattice, closed-orbit, damping 667
 
  • J. K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Emittance preservation is an important aspect in the design and running of any new Linear Collider design, with a direct consequence on the luminosity of the machine. Damping rings provide the lower limit on achievable emittance, and so are designed to produce as small a vertical emittance as possible, not only for luminosity considerations, but also to relax tolerances in downstream, emittance diluting, systems. Maintaining such small emittances requires that the damping ring emittance is regularly “tuned”. Several methods of damping ring tuning are investigated, and analysed both in terms of their relative effectiveness, under a variety of conditions, and the non-monetary cost involved in implementing and using the various algorithms.  
 
MOPP062 Optics Design Considerations for the CLIC Pre-damping Rings emittance, focusing, optics, damping 685
 
  • Y. Papaphilippou
    CERN, Geneva
  • F. Antoniou
    National Technical University of Athens, Zografou
  The CLIC pre-damping rings have to accommodate a large emittance beam, coming in particular from the positron source and reduce its size to low enough values for injection into the main damping rings. Linear lattice design options based on an analytical approach for theoretical minimum emittance cells are presented. In particular the parameterisation of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. Complementary considerations regarding constraints imposed by positron stacking and input momentum spread are also considered.  
 
MOPP067 Coupling Correction Simulations for the ILC Damping Rings emittance, damping, simulation, lattice 700
 
  • K. G. Panagiotidis, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  The ILC damping rings are specified to operate with a vertical emittance of 2 pm. To achieve this challenging goal, an effective diagnostic and correction system will be needed; however, BPMs add impedance to the ring, and diagnostics and correctors add complexity and cost. It is therefore desirable to understand how the final achievable emittance depends on the numbers, locations, and performance of the BPMs and correctors, and to determine the minimum number of these components required. We present the results of simulations for the damping rings, indicating the effectiveness of coupling correction for different design scenarios of the diagnostics and correction systems.  
 
MOPP090 Incorporating RF into a Muon Helical Cooling Channel lattice, emittance, vacuum, simulation 760
 
  • S. A. Kahn, M. Alsharo'a, R. P. Johnson
    Muons, Inc, Batavia
  • D. R. Broemmelsiek, A. Jansson, V. Kashikhin, V. S. Kashikhin, A. L. Klebaner, G. F. Kuznetsov, G. V. Romanov, A. V. Shemyakin, D. Sun, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • L. Thorndahl
    CERN, Geneva
  A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling for muon beams. The energy lost by muons traversing the gas absorber needs to be replaced by inserting RF cavities into the lattice. Replacing the substantial muon energy losses using RF cavities with reasonable gradients will require a significant fraction of the channel length be devoted to RF. However, to provide the maximum phase space cooling and minimal muon losses, the helical channel should have a short period and length. In this paper we shall examine three approaches to include RF cavities into the HCC lattice:
  1. Use higher frequency cavities that can be placed inside the magnetic channel,
  2. Interleave cavities between magnetic coil rings, and
  3. Place banks of RF cavities between segments of HCC channels.
Each of these approaches has positive and negative features that need to be evaluated in selecting the proper concept for including RF into the HCC system.
 
 
MOPP111 Beam Tests with the MAFF IH-RFQ at the IAP-Frankfurt ion-source, ion, emittance, rfq 817
 
  • H. Z. Zimmermann, D. Habs
    LMU, Garching
  • A. Bechtold, P. Kolb, A. Schempp
    IAP, Frankfurt am Main
  The IH-type RFQ for the MAFF project at the LMU Munich is integrated into a test bench at the IAP in Frankfurt. The existing IH-RFQ set-up is the second after the HIS at GSI and the first one that can be directly compared to a very similar 4-rod type machine, the REX-ISOLDE RFQ at CERN. The test bench consists of an ionsource, an electrostatic quadrupole lens system with implemented steerers, and several beam diagnostic like a two dimensional emittance scanner, bending magnet and a fast faraday cup. Experimental results will be presented. These tests accompanied with theoretical investigations will be done with special respect to the applicability of such normal conducting RFQ accelerators to the EURISOL post accelerator.  
 
MOPP140 Status and Test Results of High Current 5-cell SRF Cavities Developed at JLAB damping, dipole, impedance, simulation 886
 
  • F. Marhauser, G. Cheng, G. Ciovati, W. A. Clemens, E. Daly, D. Forehand, J. Henry, P. Kneisel, S. Manning, R. Manus, R. A. Rimmer, C. Tennant, H. Wang
    Jefferson Lab, Newport News, Virginia
  A new compact CW cryomodule development for use in future ERLs and FELs is underway at JLAB. Five-cell SRF cavities have been built at 1497 MHz for moderate RF input power scenarios with waveguide endgroups to efficiently transfer the beam induced HOM energy to room temperature loads. Effort has been made as well to provide a good real-estate gradient, cryogenic efficiency and HOMs tuned to safe frequencies to minimize HOM power extracted from the beam. Preliminary tests carried out earlier for two single-cell cavities at 1497 MHz cavity -one with a waveguide endgroup- and a bare 1497 MHz five-cell cavity have exceeded gradient and Qo specifications with no signs of multipacting and encouraged us to built two fully equipped 1497 MHz five-cell cavities. We report on the latest test results and the HOM impedance budget of the cavity used to evaluate BBU limits based on special machine optics.  
 
MOPP153 Cavity Diagnostics Using Rotating Mapping System for L-band ERL Superconducting Cavity radiation, electron, diagnostics, linac 907
 
  • H. Sakai, K. Shinoe
    ISSP/SRL, Chiba
  • T. Furuya, T. Takahashi, K. Umemori
    KEK, Ibaraki
  • M. Sawamura
    JAEA/ERL, Ibaraki
  We are developing the L-band superconducting cavity for Energy Recovery Linac in Japan. In order to survey the electron emission and the heating spot of the cavity inner surface in detail, cavity diagnostics with the rotating mapping system was applied for the vertical tests of our cavities. Two types of sensor, one of which is the carbon resistor and the other is the Si PIN photo diode, was equipped to detect the temperature rise and electron emission. These two sensor arrays were arranged along the cavity axis and set on the rotating mechanics with servo motor. By rotating the sensor arrays around the cavity axis, a lot of information is obtained all over the cavity surface in detail. It is preferable that the number of sensors will be reduced compared with the usual cavity mapping system by using this rotating mapping system. We have already fabricated the Nb single cell cavities which is optimised for ERL operation and then performed the vertical test of Nb ERL single cell cavities. This paper reports the results of the mapping system with Nb single cell ERL-shape cavities.  
 
TUOBG04 A Vlasov-Maxwell Solver to Study Microbunching Instability in the FERMI@ELETTRA First Bunch Compressor System dipole, electron, synchrotron, emittance 971
 
  • G. Bassi
    Liverpool University, Science Faculty, Liverpool
  • G. Bassi
    Cockcroft Institute, Warrington, Cheshire
  • J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  Microbunching can cause an instability which degrades beam quality. This is a major concern for free electron lasers where very bright electron beams are required. A basic theoretical framework for understanding this instability is the 3D Vlasov-Maxwell system. However, the numerical integration of this system is computationally too intensive at the moment. As a result, investigations to date have been done using very simplified analytical models or numerical solvers based on simple 1D models. We have developed an accurate and reliable 2D Vlasov-Maxwell solver which we believe improves existing codes. Our solver has been successfully tested against the Zeuthen benchmark bunch compressors*. In the present contribution we apply our self-consistent, parallel solver to study the microbunching instability in the first bunch compressor system of FERMI@ELETTRA. This system was proposed as a benchmark for testing codes at the September'07 workshop on microbunching instability in Trieste**.

*PAC2007, papers TUZBC03 and THPAN084.
**https://www.elettra.trieste.it/FERMI/index.php?n=Main. MicrobProgram

 
slides icon Slides  
 
TUPC002 Design of a Tomography Module for the PITZ Facility diagnostics, emittance, space-charge, electron 1038
 
  • G. Asova, K. Floettmann
    DESY, Hamburg
  • D. J. Holder, B. D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, S. Rimjaem, F. Stephan
    DESY Zeuthen, Zeuthen
  The goal of the Photo Injector Test Facility at DESY in Zeuthen (PITZ) is to develop sources of high phase-space density electron beams that are required for the successful operation of SASE FELs. This requires detailed characterization of the sources and therefore the development of suitable advanced diagnostics. As part of the ongoing upgrade towards higher beam energies, new diagnostics components are being installed. An example is a tomography module for transverse phase space reconstruction which is designed to operate in the energy range between 15 and 40 MeV. The module consists of four observation screens with three FODO cells between them. A number of upstream quadrupoles are used to match the beam envelope parameters to the optics of the FODO lattice. This contribution presents the final design of the tomography module. Data from numerical simulations are used to illustrate the expected performance and to compare it to a simplified setup of two quadrupoles. The quality of the reconstruction is revised with the help of different algorithms.  
 
TUPC012 MICE: The International Muon Ionization Cooling Experiment: Diagnostic Systems emittance, factory, dipole, diagnostics 1068
 
  • A. D. Bross
    Fermilab, Batavia, Illinois
  • T. L. Hart
    IIT, Chicago, Illinois
  The Muon Ionization Cooling Experiment will make detailed measurements of muon ionization cooling using a new constructed low-energy muon beam at the Rutherford Appleton Laboratory. The experiment is a single-particle experiment and utilizes many detector techniques from High-Energy Physics experiments. To characterize and monitor the muon beam line, newly developed scintillating fiber profile monitors will employed. In order to monitor the purity of the beam and tag the arrival time of individual muons, a dual Aerogel Cerenkov system and a plastic scintillator time-of-flight system will be used. The 4-momenta of the muons will be measured by two identical spectrometer systems (one before and one after the cooling apparatus) which employ a fiber tracker that utilizes 350 micron diameter scintillator fiber. An additional time-of-flight system and electron and muon calorimeters are used to tag outgoing muons. We will discuss the design of the MICE diagnostic systems, the operation and give the first results from beam measurements in the MICE experimental hall.

A. Bross on behalf of the MICE collaboration.

 
 
TUPC026 Simulating a UMER Beam Position Monitor simulation, coupling, dipole, electron 1104
 
  • K. Fiuza
    IF-UFRGS, Porto Alegre
  • S. Bernal, I. Haber, R. A. Kishek
    UMD, College Park, Maryland
  We have investigated numerically and experimentally a beam position monitor (BPM), using the WARP code* to study image charge effects for an off-axis beam. In order to apply the theory of image charge, we calibrated the BPM response for the University of Maryland Electron Ring**. We studied the BPM linearity using several WARP simulations with different transverse offsets. The simulations were also compared with offsets measured employing a phosphor screen. In this paper we report the methodology used and results of this work.

* D. P. Grote et. all "New Developments in WARP Progress Toward End-to-End Simulation", Fus. Eng. & Des. 32-33 (1996) 193.
** J. Harris et. all "A fast beam position monitor for UMER", PAC'01, p 1387.

 
 
TUPC032 Phase Space Tomography Using the Cornell ERL DC Gun emittance, gun, electron, diagnostics 1119
 
  • F. E. Hannon
    Jefferson Lab, Newport News, Virginia
  • I. V. Bazarov, B. M. Dunham, Y. Li, X. G. Liu
    Cornell University, Department of Physics, Ithaca, New York
  The brightness and quality of electron beams in linac-based light sources are ultimately limited by the properties of the beam in the injector. It is thus important to have knowledge of the phase space distribution in addition to the rms emittance to provide an insight into high beam brightness formation mechanisms. A tomography technique has been used to reconstruct the transverse phase space of the electron beam delivered from the Cornell University ERL DC gun. The tomography diagnostic utilised three solenoid magnets directly after the DC gun and a view-screen. The injector was operated at 250keV in the emittance dominated regime, and the results showed good agreement to the phase space measured using a slit-screen method and that generated from simulation with the particle tracking code ASTRA. Comparison of various reconstruction methods is provided.  
 
TUPC078 The Gun Spectrometer Design for the FERMI@Elettra Project gun, space-charge, simulation, diagnostics 1233
 
  • G. Penco, D. Castronovo, M. Trovo, D. Zangrando
    ELETTRA, Basovizza, Trieste
  In the FERMI linac layout the first spectrometer has been located close to the exit of the photoinjector gun at about 5 MeV. The main purpose of this equipment is measuring the energy and energy spread of the beam. Combining the spectrometer with Yag screens and Cerenkov radiators allows the investigation and characterization of eventual deterioration of the longitudinal profile due to the space charge forces and microbunching instabilities. The design specification of the magnet and multi-particle tracking code simulation results are presented in this paper.  
 
TUPC079 Beam Emittance Measurement for the New Full Energy Injector at ELETTRA emittance, booster, simulation, diagnostics 1236
 
  • G. Penco, L. Badano, S. Bassanese, G. Ciani, P. Craievich, S. Di Mitri, M. Ferianis, M. Predonzani, M. Veronese
    ELETTRA, Basovizza, Trieste
  • A. A. Lutman
    DEEI, Trieste
  An emittance measurement station was set up and operated with the quadrupole scan technique to characterize the electron beam transverse phase space at the Elettra laboratory. The diagnostic station, based on a YAG:Ce scintillation screen imaged by a CCD digital camera, was installed at the end of the 100 MeV booster pre-injector together with a beam longitudinal structure monitor. This equipment plays an important role for the bunching system optimization and for the optical matching of the injection transfer line to the booster ring. Experimental results and comparison with multi-particle tracking codes simulation are presented in this paper.  
 
TUPC083 A Diagnostics Plate for the IFMIF-EVEDA Accelerator diagnostics, emittance, radiation, dipole 1248
 
  • I. Podadera Aliseda, B. Brañas, J. M. Carmona, A. Ibarra, C. Oliver
    CIEMAT, Madrid
  • P.-Y. Beauvais, J. Marroncle, A. Mosnier
    CEA, Gif-sur-Yvette
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator which aims to validate the technology that will be used in the future IFMIF accelerator. It is essential then to implement the necessary instrumentation for the commissioning, operation and correct characterization of the beam properties of the accelerator prototype. To achieve this goal, a complete set of instrumentation will be installed in the last part of the accelerator, just before the beam dump, in the so-called Diagnostics Plate (DP). It must allow the measurement of the main parameters of the beam: current, phase, position, transverse profile, energy, transverse halo, transverse emittance and longitudinal profile. The main challenges of such a measurement are the high damage power of the low-energy cw 125 mA beam, which precludes the use of interceptive instrumentation. In addition, the DP will not only be used during operation but also during the commissioning of the different accelerating structures at 5 and 9 MeV. In this contribution, the requirements imposed to the instrumentation, the type of techniques that will be used and a first conceptual design will be presented.  
 
TUPC087 4D Emittance Measurements Using Multiple Wire and Waist Scan Methods in the ATF Extraction Line emittance, coupling, extraction, simulation 1257
 
  • C. Rimbault, P. Bambade, J. Brossard
    LAL, Orsay
  • M. Alabau
    IFIC, Valencia
  • S. Kuroda
    KEK, Ibaraki
  • A. Scarfe
    UMAN, Manchester
  • M. Woodley
    SLAC, Menlo Park, California
  Emittance measurements performed in the diagnostic section of the ATF extraction line since 1998 lead to vertical emittances three times larger than the expected ones, with a strong dependence on intensity. An experimental program is pursued to investigate potential sources of emittance growth and find possible remedies. This requires efficient and reliable emittance measurement techniques. In the past, several phase-space reconstruction methods developed at SLAC and KEK have been used to estimate the vertical emittance, based on multiple location beam-size measurements and dedicated quadrupole scans. These methods have been shown to be very sensitive to measurement errors and other fluctuations in beam conditions. In this context new emittance measurements have been performed revisiting these methods and newly developed ones with a systematic approach to compare and characterise their performance in the ATF EXT line.  
 
TUPC091 Measurement of Quadrupolar Tune Shifts under Multibunch Operations of the Photon Factory Storage Ring storage-ring, single-bunch, synchrotron, factory 1269
 
  • S. Sakanaka, T. Mitsuhashi, T. Obina
    KEK, Ibaraki
  The quadrupolar tune shifts were observed under a single-bunch operation of the Photon Factory storage ring at KEK, which indicated that a quadrupolar component of wakefields affected the motion of an electron bunch. We recently measured the quadrupolar tune shifts under a multibunch operation of the Photon Factory storage ring. To detect the transverse quadrupole-mode oscillations of electron bunches, we used an avalanche photo diode (APD) which can detect visible synchrotron light with short rise-time of less than 1 ns. As a result, we observed that the quadrupolar tunes depended on the total beam current by 0.0082 1/A (in horizontal) and -0.0082 1/A (in vertical), respectively. These tune shifts can be caused by a quadrupolar component of long-range wakefield.  
 
TUPC105 Slice Emittance Measurements at SPARC Photoinjector with a RF Deflector emittance, diagnostics, linac, dipole 1305
 
  • C. Vaccarezza, D. Alesini, E. Chiadroni, G. Di Pirro, M. Ferrario, L. Ficcadenti, D. Filippetto, G. Gatti, B. Marchetti, E. Pace
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • A. Mostacci
    Rome University La Sapienza, Roma
  The SPARC photoinjector is a R&D facility performing beam dynamics studies and driving a SASE-FEL. The RF deflector, completely designed and built by the SPARC team, allows measurements of the longitudinal properties of the beam bunch. Using it and the well know technique of the quadrupoles scan, the slice emittance has been measured in different conditions and benchmarked with the simulations.  
 
TUPC116 Field Characterization of XFEL Quadrupole Magnets electron, laser, alignment, controls 1338
 
  • A. Hedqvist, H. Danared, F. Hellberg
    MSL, Stockholm
  • J. Pflueger
    DESY, Hamburg
  The European X-ray free electron laser (XFEL) will be one of the most advanced light source facilities in Europe and produce high intensity laser light of wavelengths down to 0.1 nm*. The laser light is produced and amplified by electrons moving through long undulator systems, each consisting of several 5 m long segments. After each undulator segment an adjustable quadrupole magnet is placed to focus the electron beam. For optimum control of the laser light the centre of the quadrupoles need to be positioned along a straight line with an accuracy of 0.001 mm which only can be reached by beam based alignment (BBA). Prior to the BBA procedure the magnets need to be aligned along the beam path, therefore the centre position of the magnet has to be determined relative to fiducials placed on the magnet body with an accuracy of approximately 0.01 mm. A rotating coil system has been set up at the Manne Siegbahn Laboratory to characterize the magnetic field between the four magnetic poles and to measure the stability of the magnetic centre. The accuracy of this instrument and procedures of how to fiducialize the magnetic centre are presented.

*European XFEL technical design report, edited by M. Altarelli et. al., DESY 2006.

 
 
TUPC117 Beam Based Alignment of Quadrupole Triplets by Use of MATLAB Based Modeling storage-ring, survey, alignment, optics 1341
 
  • O. Kopitetzki, D. Schirmer, G. Schmidt, K. Wille
    DELTA, Dortmund
  A new beam based method is introduced to measure the transversal shifts of quadrupole magnets in relation to each other within triplet structures. The displacements of the quadrupole magnets can be calculated by quadrupole strength variation in combination with a simulation of the orbit distortions utilizing a MATLAB based model for beam optics. A local smoothing of the quadrupole alignment can be achieved with accuracy better than those of geodetic surveys. Results are presented and compared with data from geodetic surveys.  
 
TUPC119 Corrector Based Determination of Quadrupole Centres dipole, closed-orbit, storage-ring, feedback 1347
 
  • M. Sjöström, M. Eriksson, L.-J. Lindgren, E. J. Wallén
    MAX-lab, Lund
  A corrector magnet based method to determine the quadrupole magnet centres for storage rings has been tested on the MAX III synchrotron light source. The required corrector magnet strengths for the corrected beam orbit are used to determine the quadrupole magnet centre positions. This method is the most effective for an optimal distribution of beam position monitors and corrector magnets in the storage ring and will be used as a basis for the MAX IV storage rings.  
 
TUPC121 Nanometre Precision Interferometric Stability Monitoring Systems for Key Accelerator Components laser, monitoring, alignment, linear-collider 1350
 
  • P. A. Coe, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • M. S. Warden
    JAI, Oxford
  The MONALISA group develops novel, accurate, nanometre resolution, interferometric systems to monitor relative motions between key accelerator components. We use cost-effective technology developed for the telecommunications market, providing readily scalable, adaptable solutions. Key magnets and diagnostics in the beam-delivery section of the International Linear Collider (ILC) will need to maintain stable relative positions. In particular, the final focus quadrupole magnets require nanometre level stability. Even greater stability requirements will be placed on components for the Compact Linear Accelerator (CLIC). Interferometers provide the only means of monitoring relative positions over long timescales, at the nanometre and sub-nanometre level. We are working to improve our measurement resolution using an optical frequency reference obtained by locking the second harmonic of an ultra-narrow linewidth 1560 nm fibre laser to a D2 transition in Rubidium-87. The latest results from this system tested on novel design, fibre-coupled, evacuated interferometers will be presented.  
 
TUPC122 Feedback Corrections for Ground Motion Effects at ATF2 sextupole, feedback, optics, coupling 1353
 
  • Y. Renier, P. Bambade
    LAL, Orsay
  Ground motion will over time produce beam misalignments and size increases at the IP of the ATF2 beam line. The spatial and temporal characteristics of the vibrations measured on the site have been studied and model parameters have been fitted to allow reliably simulating the effects induced on the beam. A feedback loop to minimise the residual beam motion at the IP is considered, based on optimising the coefficients of a PID controller on both short and long time-scales.  
 
TUPC134 Results from Commissioning of the Energy Extraction Facilities of the LHC Machine extraction, dipole, superconducting-magnet, simulation 1383
 
  • K. H. Mess, G.-J. Coelingh, K. Dahlerup-Petersen
    CERN, Geneva
  The risk of damage to the superconducting magnets, busbars and current leads of the LHC machine in case of a resistive transition (quench) is being minimized by adequate protection. The protection is based on early quench detection, bypassing the quenching magnets by cold diodes, energy density dilution in the quenching magnets using heaters and, eventually, energy extraction. For two hundred and twenty-six LHC circuits (600 A and 13 kA) extraction of the stored magnetic energy to external dump resistors was required. All these systems are now installed in the machine and the final hardware commissioning has been undertaken. After a short description of the topology and definitive features, layouts and parameters of these systems the paper will focus on the results from their successful commissioning and an analysis of the system performance.  
 
TUPD010 High-power Switch with SI-thyristor for the Power Supply of Very High Repletion Rate Pulsed Quadrupole Magnet power-supply, induction, kicker, positron 1452
 
  • T. Mimashi, M. Kikuchi
    KEK, Ibaraki
  • A. Tokuchi, K. Tsuchida
    Nichicon (Kusatsu) Corporation, Shiga
  A solid-state switch with SI-thyristors is implemented as the high power switch for the pulsed quadrupole magnet power supply. Its repletion rate is 100 kHz with the half sign 1 microsecond pulse. The switch has been successfully operated.  
 
TUPD011 The Pulsed Quadrupole Magnet for KEKB Low Energy Ring focusing, luminosity, positron, electron 1455
 
  • T. Mimashi, T. Ieiri, M. Kikuchi
    KEK, Ibaraki
  • A. Tokuchi, K. Tsuchida
    Nichicon (Kusatsu) Corporation, Shiga
  In the KEKB low energy ring, because of photoelectron clouds, the betatron tune changes along the position in the train. The produced photoelectron gives focusing force to the beam. It is remarkable especially in the vertical tune. Since we have a 500 nanoseconds beam abort gap, the photoelectron focusing force is weaker at the head of train. It means the vertical tune is lower at the head of the train. In order to cancel this tune shift, the pulsed quadrupole magnet was installed. The pulsed quadrupole magnet system and its performance are described.  
 
TUPD020 Remote Alignment of Low Beta Quadrupoles with Micrometric Resolution radiation, alignment, controls, survey 1470
 
  • M. Acar, J. Boerez, A. Herty, H. Mainaud Durand, A. Marin, J.-P. Quesnel
    CERN, Geneva
  Considering their location in a high radiation environment and the alignment tolerances requested, the Low Beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.  
 
TUPD039 Load Curves Distortion Induced by Fringe Field Effects in the Ion Nanoprobe focusing, ion, controls 1514
 
  • Yu. V. Tereshonkov, S. N. Andrianov
    St. Petersburg State University, Applied Mathematics & Control Processes Faculty, St. Petersburg
  Nanoprobes are known to be high precision systems, which require preliminary modeling for thorough analysis of optimal working modes. One of most crucial characteristics of the special class of such beam lines is the so-called load curves (or surfaces). This paper investigates one of the types of intrinsic effects, i.e. fringe fields and their influence on load curves and surfaces, which make it possible to construct the purposeful search of optimal working regimes for nanoprobes. A number of different models for fringe field presentation are discussed in the paper. Analytical and numerical methods and tools are used for analysis and selection of optimal parameters for fringe field models.  
 
TUPD040 Design, Manufacturing and Tests of a Micrometer Precision Mover for CTF3 Quadrupoles controls, alignment, emittance, beam-losses 1517
 
  • F. Toral, C. Burgos, D. Carrillo, L. García-Tabarés, J. L. Gutierrez, I. Rodriguez, E. Rodríguez García, S. Sanz, C. Vazquez
    CIEMAT, Madrid
  • E. Adli, N. C. Chritin, S. Doebert, J. A. Rodriguez
    CERN, Geneva
  • J. Calero
    CEDEX, Madrid
  A new remotely controlled moving table has been designed for the quadrupoles of the CTF3 Test Beam Line, as part of the beam based alignment system. This device must provide both vertical and horizontal (transverse to the beam) movements. The specifications request a reproducibility of ± 5 micron, with a resolution of 1 micron and a stroke of ± 4 mm. Due to the weight of the magnet, about 50 kg, and the space restrictions, a solution based on small stepping motors with integrated linear spindles has been chosen. The motor responsible of the vertical movement rests on a wedge, with a double purpose: to make the design more compact, and to increase the lifting force for a given motor size. Mechanical switches are used as end-of-movement sensors and home position detectors. The performed tests to check the mover prototype performance are also reported in this paper. Next step will be to launch series production, which will consist of 16 units.  
 
TUPP017 Orbit and Dispersion Tool at FLASH controls, undulator, optics, electron 1565
 
  • E. Prat, V. Balandin, N. Golubeva
    DESY, Hamburg
  • J. K. Kamenik, I. Kriznar, T. Kusterle
    Cosylab, Ljubljana
  Based on a former MATLAB tool, a java-based application to measure and correct orbit and dispersion has been developed at FLASH. In this paper we discuss the algorithm used in this tool as well as its functionality. First tests on machine operation are also presented.  
 
TUPP032 Trajectory Jitter and Single Bunch Beam Break Up Instability linac, emittance, betatron, simulation 1607
 
  • S. Di Mitri, P. Craievich
    ELETTRA, Basovizza, Trieste
  • M. Borland
    ANL, Argonne, Illinois
  • A. Zholents
    LBNL, Berkeley, California
  This paper addresses stability issues related to control of the beam break up (BBU) instability in the FERMI@Elettra linac using local trajectory bumps. Analytical study and simulations using the Elegant code are presented. Three different parameters have been used to characterize the BBU, i.e. the projected emittance, the bunch head-to-tail deviation, and the Courant-Snyder invariant for the slice centroid. It is shown that shot-to-shot trajectory jitter in the injector affects the efficiency of the control of the BBU.  
 
TUPP045 Studies of Beam Breakup in Dielectric Structures focusing, simulation, single-bunch, electron 1643
 
  • A. Kanareykin, C.-J. Jing, A. L. Kustov, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, J. G. Power
    ANL, Argonne, Illinois
  Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable at the AWA facility. The numerical part of this research is based on a particle-Green’s function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.  
 
TUPP059 Study of Controlled Longitudinal Emittance Blow-up for High Intensity LHC Beams in the CERN SPS emittance, synchrotron, damping, beam-loading 1676
 
  • G. Papotti, T. Bohl, T. P.R. Linnecar, E. N. Shaposhnikova, J. Tuckmantel
    CERN, Geneva
  Preventive longitudinal emittance blow-up, in addition to a fourth harmonic Landau damping RF system, is required to keep the LHC beam in the SPS stable up to extraction. The beam is blown-up in a controlled way during the acceleration ramp by using band-limited phase noise targeted to act inside the synchrotron frequency spread, which is itself modified both by the second RF system and by intensity effects (beam loading and others). For a high intensity beam these latter effects can lead to a non-uniform emittance blow-up and even loss of stability for certain bunches in the batch. In this paper we present studies of the emittance blow-up achieved with high intensity beams under different conditions of both RF and noise parameters.  
 
TUPP066 CERN SPS Impedance in 2007 impedance, kicker, shielding, synchrotron 1691
 
  • E. Métral, G. Arduini, T. Bohl, H. Burkhardt, F. Caspers, H. Damerau, T. Kroyer, H. Medina, G. Rumolo, M. Schokker, E. N. Shaposhnikova, J. Tuckmantel
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • B. Salvant
    EPFL, Lausanne
  • B. Spataro
    INFN/LNF, Frascati (Roma)
  Each year several measurements of the beam coupling impedance are performed in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of its evolution. In parallel, after the extensive and successful campaign of identification, classification and cure of the possible sources of (mainly longitudinal) impedance between 1998 and 2001, a new campaign (essentially for the transverse impedance this time) has started few years ago, in view of the operation of the SPS with higher intensity for the LHC luminosity upgrade. The present paper summarizes the results obtained from the measurements performed over the last few years and compares them to our predictions. In particular, it reveals that the longitudinal impedance is reasonably well understood and the main contributors have already been identified. However, the situation is quite different in the transverse plane: albeit the relative evolution of the transverse impedance over the last few years can be well explained by the introduction of the nine MKE kickers necessary for beam extraction towards the LHC, significant contributors to the SPS transverse impedance have not been identified yet.  
 
TUPP097 New Formalism in the Spin Tracking Code Spink synchrotron, resonance, radio-frequency, extraction 1756
 
  • A. U. Luccio, F. Lin
    BNL, Upton, Long Island, New York
  The code Spink*, in use for more than 10 years to track polarized hadrons in a synchrotron, was overhauled with the introduction of a new system of coordinates based on a generalized Frenet-Serret system in all dimensions in space, which allows a better treatment of the curvature of the reference orbit. Two more improvements are (a) treatment of tensor polarization for particles like polarized deuterons, and (b) inclusion of space charge and beam-beam effects, so the code can be used to track spin in synchrotrons with high luminosity like new generation colliders.

*A. U. Luccio. Proc. Adriatico Research Conf. on Trends in Colliders
Spin Physics. Trieste, Italy, 12/5-8, 1995.

 
 
TUPP124 Status of the Particle Therapy Accelerator System Built by DANFYSIK A/S synchrotron, vacuum, dipole, ion 1815
 
  • S. P. Møller, T. Andersen, F. Bødker, A. Baurichter, M. Budde, P. A. Elkiaer, C. E. Hansen, N. Hauge, T. Holst, I. Jensen, L. K. Kruse, S. M. Madsen, M. Schmidt
    Danfysik A/S, Jyllinge
  • K. Blasche
    BTE Heidelberg, Ingeniurbüro, Schriesheim
  • B. J. Franczak
    GSI, Darmstadt
  Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The accelerators will consist of an injector (7 MeV/u proton and light ions) and a compact synchrotron able to accelerate proton beams up to 250 MeV and carbon ions up to 430 MeV/u in less than 1s. These beams can be slowly extracted over a period of up to 10s and delivered to treatment rooms through a choice of fixed-angle horizontal and semi-vertical beamlines and Gantry Systems. The intensity for protons and carbon ions will be sufficient for the needs of scanning beam applications. The design of a particular system, with three horizontal beamlines and one semi-vertical (45°) beamline, will be described. At the time of EPAC08, most components have been manufactured and hardware tested. The detailed layout of the facility will be presented, together with some of the components and their performance.

*Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use.

 
 
TUPP133 Assembly of the Carbon Beam Gantry at the Heidelberg Ion Therapy (HIT) Accelerator ion, alignment, proton, survey 1839
 
  • U. Weinrich, R. Fuchs
    GSI, Darmstadt
  • E. Sust
    MT Mechatronics, Main
  The HIT facility comprises the only carbon ion gantry worldwide. This gantry is especially unique in offering fully flexible beam transport to the patient up to a magnetic rigidity of 6.6 Tm, equivalent to an energy of C-ions of 430 MeV/u. It includes a full 3D-beam scanning system and full medical treatment environment. The gantry can be rotated by 360 degree so that the beam may be aimed at the patient from arbitrary directions. Commissioning of the gantry with beam was started in January 2008, when the first beams were transported into the treatment room. The design and assembly of this gantry with a rotating mass on the order of 600 tons was a real challenge to the project partners involved, in particular the supplier MT Mechatronics. Given the tight tolerances for the position of the beam line components the survey and alignment procedure was difficult, since also the elastic deformation for the different rotation angles had to be taken into account. This presentation will report on the experiences and results of the assembly and alignment phases. Furthermore, the final performance reached for precision and reproducibility of the beam line components will be presented.  
 
TUPP134 Commissioning of the Carbon Beam Gantry at the Heidelberg Ion Therapy (HIT) Accelerator ion, proton, beam-transport, synchrotron 1842
 
  • U. Weinrich, C. M. Kleffner
    GSI, Darmstadt
  The HIT facility comprises the only carbon ion gantry worldwide. This gantry is especially unique in offering fully flexible beam transport to the patient for carbon ions up to an energy of 430 MeV/u. It includes a full 3D-beam scanning system and full medical treatment environment. The gantry can be rotated by 360 degree so that the beam may be directed at the patient from arbitrary directions. Commissioning with beam of the gantry was successfully started in January 2008 when the first proton and carbons beams were transported into the gantry treatment room. Based on theoretical calculations for rotation independent settings of the beam optics, the beam commissioning aims for an efficient practical way to realize the full variety of required beam properties (2 ion types, 10 intensities, 255 energy steps, and four beam sizes) in the isocenter independent of the gantry angle. The presentation will report on the concept and progress of the beam commissioning process.  
 
WEPC001 Status of PETRA III wiggler, damping, vacuum, alignment 1977
 
  • K. Balewski
    DESY, Hamburg
  PETRA III is a new hard x-ray synchrotron radiation source which will be operated at 6 GeV with a extremely low horizontal emittance of 1nmrad. This new light source will be the result of a conversion of the existing accelerator PETRA II into a light source. The conversion comprises the complete rebuilding of one eighth of the 2304 m long storage ring, which will then house 14 undulator beam lines and the modernisation and refurbishment of the remaining seven eighths. In addition two 100m long damping wiggler section will be installed which are required to achieve the small design emittance. During the last four years extensive design work, construction and production of components have been carried out to prepare for the conversion. Since the 2nd of July the construction activities have started when PETRA II was no longer needed as a pre-accelerator for HERA. At present the project is still on track so that operation with beam is foreseen for January 2009 and first user experiments in the second half of 2009. In this report a brief overview of the project and the status of the constructional work, the different components and the installation in the tunnel will be given.  
 
WEPC002 Analysis of Beam Orbit Stability and Ground Vibrations at the Diamond Storage Ring resonance, feedback, ground-motion, storage-ring 1980
 
  • R. Bartolini, H. C. Huang, J. Kay, I. P.S. Martin
    Diamond, Oxfordshire
  With the aim of understanding and improving the beam orbit stability at the Diamond storage ring we launched an extensive campaign of ground and magnets vibration measurements in order to identify the sources of ground vibration and how they affect the beam orbit stability through the girder resonances. We present here the results of the measurements performed during 2007 along with a discussion of the possible remedies and the implications for the orbit feedback systems.  
 
WEPC003 Coupling Control at the SLS coupling, emittance, betatron, sextupole 1983
 
  • A. Streun, Å. Andersson, M. Böge, A. Luedeke
    PSI, Villigen
  The vertical beam size measurement at the Swiss Light Source (SLS) is based on vertically polarized visual light and allows to verify a vertical emittance of a few pm rad, resp. an emittance ratio in the 10-4 range obtained in 400 mA top-up user operation mode by tuning the lattice by means of 24 skew quadrupoles. Suppression of betatron coupling by local and global coupling correction prevents losses of Touschek scattered particles at the narrow vertical gaps of the in-vacuum undulators and thus protects these devices and increases beam lifetime, resp. the top-up interval. We will report on our experience with the beam size monitor, on the method of coupling control and on the achievements in vertical emittance and beam lifetime.  
 
WEPC009 Progress of ALBA storage-ring, vacuum, linac, booster 2001
 
  • D. Einfeld
    ALBA, Bellaterra
  The construction of the ALBA Synchrotron Light Source in Barcelona (Spain) is well advanced. In spring of this year the 100 MeV Linac will be installed and results from the commissioning will be reported on this conference. The different components for the accelerators have successfully completed the prototyping phase and the different series are now under production. Installation of Booster and Storage Ring should start in summer of this year and commissioning is planned for spring 2009. The construction status will be presented.  
 
WEPC015 Baseline Design of HLS Linac Upgrade linac, klystron, electron, gun 2019
 
  • G. Feng, W. Li, L. Shang, L. Wang, C.-F. Wu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  The existing 200MeV linac of Hefei Light Source (HLS) mainly consists of electron gun, prebuncher, buncher, one 3m S-band linac section, and four 6m S-band linac sections. Energy gain of electron beam at the end of the linac is 200MeV and energy spread is ±0.8%. In order to improve the electron beam quality, An upgrade project is required. Four 80MW klystrons will be used to instead the old ones, which can improve the beam energy stability. This upgrade can also make it possible to increase the linac energy from 200 MeV to 400 MeV without changing the accelerating structure. In the meantime, New operation modes of HLS linac has been found by extensive computer modelling and optimization. Electron beam dynamics simulation from electron gun to the end of linac has been given, which considering space charge effects and wakefields.  
 
WEPC044 Top-Up Safety Simulations for the Diamond Storage Ring electron, sextupole, simulation, storage-ring 2085
 
  • I. P.S. Martin, C. P. Bailey, E. C. Longhi, R. P. Walker
    Diamond, Oxfordshire
  • R. Bartolini, I. P.S. Martin
    JAI, Oxford
  To ensure that it is not possible for a train of injected electron bunches to pass down an open beam-line during top-up operation at the Diamond Light Source, an extensive program of tracking studies has been performed. Various error scenarios have been investigated, with realistic magnetic field, trajectory, aperture and energy errors all taken into account. We describe the tracking methods used, scenarios considered and the interlocks required in order to maintain user safety during top-up operation.  
 
WEPC051 Upgrade Plans for the ESRF Storage Ring Lattice lattice, sextupole, resonance, simulation 2106
 
  • A. Ropert, L. Farvacque
    ESRF, Grenoble
  The lattice of the ESRF storage ring is of the Double Bend Achromat type with 32 straight sections of alternating high and low horizontal beta values, currently providing 5 m of available space for insertion devices. As part of the ESRF Upgrade Programme, it is proposed to increase the length of selected insertion device straight sections from 5 to 7 m. In this paper, we will describe the different steps towards longer straight sections: implementation of a new lattice in which the straight section quadrupole triplets are replaced by doublets, design of modified straight sections with replacing the long quadrupoles by shorter ones and moving the adjacent sextupoles, experiments carried out to simulate the lattice symmetry breaking induced by a 7 m long straight section.  
 
WEPC066 The Transport Line Upgrade Proposal of Hefei Light Source injection, storage-ring, dipole, coupling 2145
 
  • L. Wang, G. Feng, W.-W. Gao, W. Li, L. Liu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  The injector of Hefei Light Source is a 200 MeV linac. A 55m transport line transfer beam to injection point of storage ring. At current stage, the mismatch of phase space is a potential source limiting the injection efficiency and stable operation of light source. A new focusing configuration of transport line was put forward, where the Twiss parameters matching was implemented. A skew quadrupole was introduced to make horizontal dispersion function matching. This matching between transport line and storage ring would be helpful to improve injection efficiency of HLS storage ring.  
 
WEPC067 Optics for the ALBA Booster Synchrotron booster, dipole, sextupole, lattice 2148
 
  • G. Benedetti, D. Einfeld, Z. Martí, M. Munoz, M. Pont
    ALBA, Bellaterra
  The ALBA booster is a full energy injector of 3 GeV for top-up operation that will be installed in the same tunnel as the Storage Ring. Its large circumference of 249.6 m and the magnetic lattice with combined function bending magnets provide an equilibrium emittance as low as 9 nm rad. In this paper the linear optics functions, the aperture requirements and the gradient error tolerances in the dipoles and quadrupoles are discussed. The closed orbit correction scheme consists of 44 horizontal and 28 vertical correctors and 44 BPMs. A solution that requires a reduced number of BPMs has been studied as well. Chromaticity correction and dynamic aperture during the ramping have been also investigated. Finally, the injection and extraction schemes are described.  
 
WEPC085 Matching with Space Charge space-charge, diagnostics, focusing, emittance 2192
 
  • B. D. Muratori, D. J. Holder
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  This paper explores the possibility of performing matching in the presence of space charge to an acceptable and useful level. Space charge gives rise to a mismatch for beams at low energies. This mismatch can be very harmful for certain applications, for example the tomography diagnostic of the PITZ2 test line. In this case, the Twiss parameters at the start of the tomography section have to be as close as possible to the design ones. As can be shown by a thin lens approximation, all the Twiss parameters at the start of the tomography section are fully determined, as is the quadrupole strength, once the length of the FODO cells is chosen. With the presence of space charge it is necessary to introduce a modification to the original matching, itself performed with a standard optimizing routine. The idea is that this modification can only compensate for the linear part of space charge and it does so by changing the quadrupole strengths. The theory is verified by using an very simple test line consisting of just two quadrupoles and modeling it using GPT (General Particle Tracer). This results in modified values for the quadrupole strengths to accommodate the effect of space charge.  
 
WEPC092 A Pulsed Quadrupole Magnet Injection at the PF-AR Storage Ring injection, beam-losses, dipole, factory 2207
 
  • H. Takaki, N. Nakamura
    ISSP/SRL, Chiba
  • K. Harada, Y. Kobayashi, T. Miyajima, S. Nagahashi, T. Obina, A. Ueda, K. Umemori
    KEK, Ibaraki
  We have examined a beam injection system that used a pulsed quadruple magnet (PQM) at the PF-AR storage ring since the spring of 2004. The system is operating well and the accumulation of the beam up to 60mA in the single bunch operation is possible by the current state. The beam injection system that uses the PQM does not require a conventional injection bump orbit, and has the feature that only one PQM in the injection part is needed. An injected beam is kicked to be proportional to the distance from the center and captured afterwards. On the other hand, the pulse kick hardly influences the stored beam at the magnetic field center of the PQM. We report on the result of collecting the basic data of the influence on the PQM beam injection at the PF-AR storage ring.  
 
WEPC106 Compensation of Variable Skew- and Normal quadrupole Focusing Effects of APPLE-II Undulators with Computer-aided Shimming undulator, radiation, insertion, insertion-device 2246
 
  • O. V. Chubar, F. Briquez, M.-E. Couprie, J.-M. Filhol, E. Leroy, F. Marteau, F. Paulin, O. Rudenko
    SOLEIL, Gif-sur-Yvette
  Variable (phase- and gap-dependent) skew- and normal-quadrupole focusing effects of APPLE II undulators on electron beam are reportedly complicating practical use of this type of insertion devices in many synchrotron radiation sources. We show that these undesirable effects, whatever their "origin", can be well controlled and in many cases efficiently compensated during the standard "virtual" shimming of APPLE-II undulators. Our method exploits small variations of the skew- and normal-quadrupole focusing components resulting from extra magnetic interaction, introduced by displacements of permanent magnet blocks during the shimming procedure, at different undulator phase and gap values. These variations can be calculated to a high accuracy, included into the corresponding "shim signatures" of magnetic field integrals, and used, along with undulator magnetic measurements data, for calculation of the most efficient magnet displacements. This approach is well suited for a computer-aided (e.g., genetic optimization based) shimming procedure. Practical results obtained with several APPLE-II undulators, which are currently successfully operating on the SOLEIL storage ring, are presented.  
 
WEPC122 Magnetic Characterization of an APPLE-II Undulator Prototype for FERMI@Elettra undulator, sextupole, controls, multipole 2294
 
  • B. Diviacco, R. Bracco, C. Knapic, D. La Civita, D. Millo, M. Musardo, G. Tomasin, D. Zangrando
    ELETTRA, Basovizza, Trieste
  The FERMI@Elettra free electron lasers will use APPLE-II undulators in the radiating sections to provide variably polarized photon beams. In preparation of the manufacturing of the final devices a prototype has been developed in order to test different methods of magnetic field optimization. For this purpose, an existing variable-gap support structure was equipped with a new mechanical interface providing the required longitudinal shifting of the magnetic arrays. Permanent magnet blocks were mounted on short modules and their field integrals measured using a stretched wire system. Field optimization was iteratively performed by proper selection of the modules to be mounted based on measurements of the partially assembled undulator structure. The results of the final magnetic field characterization are presented showing the achieved trajectory, phase and multipole errors. These results are compared with those of a previous assembly where the same modules were mounted in random order. Further improvements obtained by shimming and application of “magic fingers” are finally described.  
 
WEPC129 Undulator Demagnetization due to Radiation Losses at FLASH undulator, radiation, free-electron-laser, permanent-magnet 2308
 
  • J. Skupin, B. Faatz, Y. Li, J. Pflueger, T. Vielitz
    DESY, Hamburg
  The free-electron laser FLASH was set up at DESY Hamburg in 2004. It is a high-gain, single pass FEL which operates in the VUV and soft X-ray wavelength regime. To monitor the demagnetization of the undulator structures due to radiation losses a small test undulator was installed. This dosimetric undulator (DU) consists of a short piece of magnetic undulator structure with only 3 pole pairs and corresponding magnets. It is positioned in front of the first undulator module where a high dose rate is to be expected. The accumulated dose of DU and undulator system is derived by weekly measurements with thermoluminescence dosimeters (TLDs). The DU is dismounted and magnetically measured regularly. Based on these measurements a (maximal) relative demagnetization rate of about 5*10-4/kGy was derived. In view of this result magnetic measurements on one of the undulators from TTF1 (the predecessor of FLASH) were reviewed. They show a relative demagnetization rate of about 2*10-4/kGy which is lower but still in the same range as the result from FLASH. FEL simulations to analyse the influence of the demagnetization on the SASE process are in progress.  
 
WEPC138 Transient Electromagnetic Analysis and Thermal Design on the Magnet of 3-GeV Synchrotron magnet-design, synchrotron, proton, linac 2332
 
  • M. Abe, S. Tounos
    Hitachi, Ltd., Power & Industrial Systems R&D Laboratory, Ibaraki-ken
  • T. Adachi
    KEK, Ibaraki
  • Y. Chida
    Hitachi Ltd., Ibaraki-ken
  • K. Nakamura, T. Watanabe
    Hitachi. Ltd., Hitachi Works, Hitachi-shi
  • T. Takayanagi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • N. Tani
    JAEA/LINAC, Ibaraki-ken
  J-PARC 3GeV synchrotron is operated at 25Hz alternatively, which can generate eddy currents and heat. They can disturb continuous operations. We prepared a design technique to analyze them and manage the temperature rises of the magnets. Eddy current and hysteresis heat generations were calculated with 3D models then temperature rises were evaluated with natural convection cooling from surfaces. The technique was applied on the dipole, quadrupole and bump magnets. Slits on intense eddy current position can decrease the heat generation, however deep slits can disturb magnetic field distribution. Their depth and positions were optimized for the temperature rise reduction. So far, the synchrotron operation is fair with reasonable temperature rises.  
 
WEPC144 Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets booster, dipole, sextupole, pick-up 2347
 
  • J. DiMarco, D. J. Harding, V. S. Kashikhin, S. Kotelnikov, M. J. Lamm, A. Makulski, R. Nehring, D. F. Orris, P. Schlabach, C. Sylvester, M. Tartaglia, J. C. Tompkins, G. Velev
    Fermilab, Batavia, Illinois
  Multi-element corrector magnets are being produced at Fermilab that will enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements - normal and skew orientations of dipole, quadrupole, and sextupole - each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100kHz with 24-bit ADC’s. The performance of the measurement system and a summary of the field results are presented and discussed.  
 
WEPC153 Dipole Magnet for Use of RHIC EBIS HEBT Line multipole, dipole, sextupole, octupole 2365
 
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • M. Okamura, D. Raparia, J. Ritter
    BNL, Upton, Long Island, New York
  We present the design optimization of a dipole magnet for use of RHIC EBIS HEBT line. This magnet provides a total bending angle of 145 degrees by two identical magnets and it is used to guide H+ to Au32+ beam with energy of 2 MeV/amu. Magnetic field is required to change within 1 second corresponding to the ion species, so magnet body has the laminated structure to suppress eddy current. Effective length and field quality within a radius of 5 cm was optimized separately. Effective length was optimized by adjusting end shape not to change the beam orbit between low and high field operation more than 1 mm from intended beam orbit after bending. Then field quality was optimized by changing the shim position and additional bump. After modification, all multipole coefficients along the beam trajectory were reduced to within 10x10-4.  
 
WEPC154 Design and Fabrication of Multipole Corrector Magnet controls, power-supply, multipole, octupole 2368
 
  • F.-Y. Lin, C.-H. Chang, H.-H. Chen, C.-S. Hwang, C. Y. Kuo
    NSRRC, Hsinchu
  The Taiwan Light Source (TLS) had started to operate in top-up mode injection since October 2005. Meanwhile, the Elliptically Polarized Undulator (EPU5.6) was operated very well in the decay mode operation. However, the partial beam loss had occurred when the top-up injection was executed at magnet gap and magnet array phase are fixed at the minimum gap and π(vertical polarization mode), respectively. In order to solve the partial beam loss, we design a new multipole corrector magnet to be installed in the downstream of the EPU5.6 to compensate for the multipole field error. This multipole magnet can provide the normal and skew components of the dipole, quadrupole, sextupole, octople, and dodecapole field components. Changeable multipole field components mechanism has been designed by using a special electric circuit. In addition, the measurement systems of Hall probe and stretch wire are used to measure the field quality of the multipole corrector magnet. This report will discuss the magnet circuit design, mechanical design, the switching mechanism of the multipole field components, and the field measurement results.  
 
WEPC155 Experimental Characterization of Permanent Magnet Harmonic Corrector Rings permanent-magnet, dipole, insertion, insertion-device 2371
 
  • A. Madur, S. Marks, S. Prestemon, D. Schlueter
    LBNL, Berkeley, California
  A total of three permanent magnet chicane magnets have been installed at the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. The magnet design incorporates counter-rotating permanent magnet pairs with trim coils. The purpose is to provide a fixed angular separation between two successive elliptically polarizing undulator (EPU) photon fans and to correct steering perturbation resulting from EPU polarization state and gap changes. This paper presents a method for the determination of the permanent magnets parameters and setting relative orientations of the rotors by performing magnetic measurements with rotating coils. The measurement method will be developed and illustrated with experimental data from the measurement of a 16 cylinder permanent magnet harmonic corrector ring.  
 
WEPC156 Development and Adjustment of the EMMA Quadrupole Magnets multipole, dipole, electron, controls 2374
 
  • N. Marks, B. J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M. J. Crawley, F. T.D. Goldie, B. Leigh
    Tesla Engineering Limited, West-Sussex
  The non-scaling FFAG EMMA, now under construction at STFC’s Daresbury Laboratory, requires 84 quadrupoles. Because of the unusual nature of these magnets*, prototypes for the F and the D type quadrupoles were required. These magnets were ordered from and constructed and measured by Tesla Engineering. Subsequently, design changes have been made and modifications to the prototypes carried out. The paper will give engineering details of these prototypes, of the measurement results obtained using a rotating coil magnetometer and subsequent adjustments to clamp plates and pole profiles needed to obtain optimum three dimensional gradient quality. As a result of these developments, the construction of the magnets for the complete ring is now underway.

*B. J.A. Shepherd & N. Marks, “Quadrupole Magnets For The 20MeV FFAG, ‘EMMA’”, PAC 2007 (MOPAN107).

 
 
WEPC157 A Hybrid Quadrupole Design for the RAL Front End Test Stand (FETS) simulation, permanent-magnet, proton, beam-losses 2377
 
  • D. C. Plostinar, M. A. Clarke-Gayther
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • P. Davis
    STFC/RAL, Chilton, Didcot, Oxon
  • S. J.S. Jago
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  The Front End Test Stand project being constructed at Rutherford Appleton Laboratory (RAL) aims to deliver a high current (60 mA) H- chopped ion beam, at 3 MeV and 50 pps. The main components of FETS are the H- ion source, the Low Energy Beam Transport line (LEBT), the Radio Frequency Quadrupole (RFQ) and the Medium Energy Transport (MEBT) line with beam chopper. Space restrictions in the MEBT line place constraints on component length and drive the requirement to identify compact component configurations. A description is given of a novel compact hybrid quadrupole magnet, whose design is based on the concentric combination of a permanent magnet quadrupole (PMQ) and a laminar conductor electromagnetic quadrupole (EMQ). Simulations of magnetic field distribution in 2 and 3D are presented, and possible applications and further developments are discussed.  
 
WEPC160 Eddy-current Effect on Field Multipoles Arising in Dipole Magnets with Elliptic and Rectangular Beam Pipe multipole, dipole, vacuum, coupling 2383
 
  • E. Perevedentsev, A. L. Romanov
    BINP SB RAS, Novosibirsk
  We present an analytical evaluation of the field-distortion effect from eddy currents induced by variation of magnetic field of dipole magnets with elliptic or rectangular beam pipe of finite conductivity. The pipe sizes and aspect are arbitrary except that for practical reasons we assume the pipe wall thickness is small as compared to the skin depth. Handy formulas are presented for the field multipoles arising from non-round shape of the beam pipe.  
 
WEPC165 Magnetic Measurements of the SSRF Storage Ring Magnets sextupole, storage-ring, multipole, dipole 2395
 
  • J. D. Zhang, Q. G. Zhou
    SINAP, Shanghai
  The SSRF storage ring comprises a total of 460 magnets which has four types and eight different effective magnetic lengths. The magnetic measurements of all the production magnets including 40 bending magnets with a maximum field of 1.2726 T, 200 quadrupoles divided in Three families with a maximum gradient of 20 T/m, 140 sextupoles with a maximum second order differential of 460 T/m, and 80 correctors with a maximum kick capability of 1.2 mrad. For the dipoles a long coil system has been used to measure the magnetic field while for the quadrupoles and sextupoles a rotating coil system has been used to determine the magnitude of the high order multipoles. In this paper the analysis of these data is discussed and results for measured magnets are presented.  
 
WEPD002 Magnetic Design Studies for the Final Focus Quadrupoles of the SuperB Large Crossing Angle Collision Scheme factory, target, background, simulation 2401
 
  • E. Paoloni
    University of Pisa and INFN, Pisa
  • S. Bettoni
    CERN, Geneva
  • M. E. Biagini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  The vertical focusing element closest to the interaction point of the SuperB factory based on the large crossing angle collision scheme (~50 mrad), must provide a pure quadrupolar field on each of the two beams. This allows to avoid the high background rate in the detector which would be produced by the over-bend of the off-energy particles if a dipolar component were present. Because of the small separation of the two beams in the transverse dimension (only 2 cm) the influence of each winding on the other one is not negligible and, for the same space limitation, a multi-layer configuration is not suitable to compensate the high order multipoles. A novel design, based on 'helical-type' windings, has therefore been investigated. The windings generates the pure quadrupolar field as a superposition of the inner field of the surrounding coil and of the outer fringe field of the neighbor one. The same idea may be used to produce two pure quadrupolar fields with opposite strength, suitable for the final focus elements in colliders, as LHC, where the sign of the circulating particles are the same. In this paper the 2D concept and the 3D model of this design are presented.  
 
WEPD005 Scaling Laws for Magnetic Energy in Superconducting Quadrupoles collider, superconducting-magnet, luminosity, positron 2407
 
  • F. Borgnolutti, E. Todesco
    CERN, Geneva
  • A. Mailfert
    ENSEM, Vandoeuvre lès Nancy
  The stored energy in superconducting magnets is one of the main ingredients needed for the quench calculation and for desingin quench protections. Here we proposed an analytical formula based on the Fourier transformation of the current density flowing within the winding to determine the magnetic energy stored in superconducting quadrupoles made of sector coils. Two corrective coefficients allowing to estimate the energy enhancement produced either by current grading or by the presence of an unsaturated iron yoke are respectively derived from a numerical and an analytical study. This approach is applied to a set of real quadrupoles to test the validity limits of the scaling law, which are shown to be of 5-10%.  
 
WEPD006 Conceptual Design of Superferric Magnets for PS2 cryogenics, dipole, magnet-design, injection 2410
 
  • L. Bottura, G. De Rijk, M. Karppinen, G. Kirby, R. Maccaferri, C. Maglioni, V. Parma, L. Rossi, W. Scandale, L. Serio, D. Tommasini
    CERN, Geneva
  We analyze feasibility and cost of a superferric magnet design for the PS2, the novel 50 GeV ring that should replace the PS in the CERN injector chain. Specifically, we provide the conceptual design of dipole and quadrupoles, including considerations on cryogenics and powering. The magnets have warm iron yoke, and cryostated superconducting coils embedded in the magnet, which reduces AC loss at cryogenic temperature. The superconductor has large operating margin to endure beam loss and operating loads over a long period of time. Although conservative, and without any critical dependence on novel technology developments, this superconducting option appears to be attractive as a low-power alternative to the normal-conducting magnets that are the present baseline for the PS2 design. In addition it provides flexibility in the selection of flat-top duration at no additional cost.  
 
WEPD007 Detection and Location of Electrical Insulation Faults on the LHC Superconducting Circuits during the Hardware Commissioning pick-up, diagnostics, instrumentation, cryogenics 2413
 
  • D. Bozzini, V. Chareyre, K. H. Mess, S. Russenschuck
    CERN, Geneva
  As part of the electrical quality assurance program, all superconducting circuits of the LHC have to be subjected to a (high) DC voltage, up to 1.9 kV DC, for the testing of the electrical insulation. Circuits with an insulation fault have to be repaired before powering. Fault location within a ± 3 m range over the total length of 2700 m has been achieved in order to limit the number of interconnection openings. In this paper, the methods, tooling, and procedures for the detection and location of electrical faults will be presented in view of the practical experience gained in the LHC tunnel. Three cases of faults detected and localized during the hardware commissioning phases of the LHC will be discussed.  
 
WEPD009 The CERN High Field Magnet Program dipole, luminosity, radiation, insertion 2419
 
  • G. De Rijk
    CERN, Geneva
  With the LHC, magnets of 10T peak field Nb-Ti technology were developed and this technology reached full maturity. The next step in field level, with a peak field in the range of 15T, will be needed for the LHC phase II upgrade. For this upgrade the temperature margin and radiation resistance of the Nb-Ti coil technology is not sufficient. Begin 2008 CERN starts a program to develop high field magnets for LHC upgrades and other future programs. For this mostly Nb3Sn conductors will be employed but also HTS conductors will be considered. In this paper an overview will be presented of the projects for which this HFM technology will be needed. The the program will be presented in terms of R&D chapters and work packages. The need and opportunities for collaborations with other institutes will be discussed.  
 
WEPD010 Electronic Systems for the Protection of Superconducting Devices in the LHC dipole, extraction, insertion, power-supply 2422
 
  • R. Denz, K. Dahlerup-Petersen, K. H. Mess
    CERN, Geneva
  The Large Hadron Collider LHC incorporates an unprecedented amount of superconducting components: magnets, bus-bars, and current leads. Most of them require active protection in case of a transition from the superconducting to the resistive state, the so-called quench. The electronic systems ensuring the reliable quench detection and further protection of these devices have been developed and produced over the last years and are currently being put into operation. The paper will describe the various protection devices and hereby focus on the final test and commissioning phase of the system. First results from operation will be presented as well as an analysis of the system performance.  
 
WEPD012 The LHC Continuous Cryostat Interconnections: the Organization of a Logistically Complex Worksite Requiring Strict Quality Standards and High Output controls, cryogenics, vacuum, alignment 2428
 
  • P. Fessia, F. F. Bertinelli, D. Bozzini, P. Cruikshank, A. Jacquemod, W. Maan, A. Musso, L. Oberli, A. Poncet, S. Russenschuck, F. Savary, M. Struik, Z. Sulek, J.-P. G. Tock, D. Tommasini, C. Vollinger
    CERN, Geneva
  • A. Grimaud
    ALL43, Saint-Genis-Pouilly
  • A. Kotarba
    HNINP, Kraków
  • L. Vaudaux
    IEG, St-Genis-Pouilly
  The interconnections of the Large Hadron Collider (LHC) continuous cryostat have been completed in autumn 2007: 1695 magnet to magnet interconnections and 224 interconnections between the continuous cryostat and the cryogenic distribution line have been closed along the 27km of the LHC. The high productivity demanded, the complexity of the interconnection sequence, the strict quality standards have required an ad hoc organization in order to steer and coordinate the activities on a worksite that was spread along the whole accelerator ring. The optimization of the intricate sequence of construction and test phases carried out by CERN staff, CERN collaborating institutes and contractors have led to the necessity of a common approach and of a very effective information flow. Specialized CERN teams have been created to deal with non standard operation to smooth the work sequences of the main assembly teams. In this paper, after having recalled the main technical challenges, we review the organizational choices that have been taken, their impact on quality and productivity and we briefly analyze the development of the worksite in term of allocated resources and production.  
 
WEPD013 Four-Coil Superconducting Helical Solenoid Model for Muon Beam Cooling beam-cooling, controls, superconducting-magnet, dipole 2431
 
  • V. S. Kashikhin, N. Andreev, A. N. Didenko, V. Kashikhin, M. J. Lamm, A. V. Makarov, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • R. P. Johnson, S. A. Kahn
    Muons, Inc, Batavia
  Novel configurations of superconducting magnets for helical muon beam cooling channels and demonstration experiments are being designed at Fermilab. The magnet system for helical cooling channels has to generate longitudinal solenoidal and transverse helical dipole and helical quadrupole fields. This paper discusses the Helical Solenoid model design and manufacturing of a 0.6 m diameter, 4-coil solenoid prototype to prove the design concept, fabrication technology, and the magnet system performance. Results of magnetic and mechanical designs with the 3D analysis by TOSCA, ANSYS and COMSOL will be presented. The model quench performance and the test setup in the FNAL Vertical Magnet Test Facility cryostat will be discussed.  
 
WEPD014 Magnets for the MANX 6-D Muon Cooling Demonstration Experiment dipole, multipole, simulation, superconductivity 2434
 
  • V. S. Kashikhin, N. Andreev, V. Kashikhin, M. J. Lamm, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • M. Alsharo'a, R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
  MANX is a 6-dimensional muon ionization-cooling experiment that has been proposed to Fermilab to demonstrate the use of a helical cooling channel (HCC) for muon beam emittance reduction for future muon colliders and neutrino factories. The HCC for MANX has solenoidal, helical dipole, and helical quadrupole magnetic components, which diminish as the beam loses energy as it slows down in the liquid helium absorber inside the magnet. The proposed magnet system design is comprised of coil rings positioned along a helical path, which will provide the desired solenoidal and helical dipole and quadrupole fields. Additional magnets that provide emittance matching between the HCC and the upstream and downstream spectrometers are also described. The results of a G4Beamline simulation of the beam cooling behavior of the magnet and absorber system will be presented.  
 
WEPD015 Design Studies of Magnet Systems for Muon Helical Cooling Channels dipole, beam-cooling, target, superconductivity 2437
 
  • V. Kashikhin, V. S. Kashikhin, M. J. Lamm, M. L. Lopes, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • M. Alsharo'a, R. P. Johnson, S. A. Kahn
    Muons, Inc, Batavia
  Helical cooling channels consisting of a magnet system with superimposed solenoid, helical dipole and quadrupole fields, and a pressurized gas absorber in the aperture, promise high efficiency in providing 6D muon beam cooling for a future Muon Collider and some other applications. Two alternative designs of the magnet system for the helical cooling channel are being investigated at the present time. The first one is based on a straight, large aperture solenoid with helical dipole and quadrupole coils. The other one is based on a spiral solenoid which generates the main solenoid field and the helical dipole and quadrupole components. Both concepts have been developed and compared for the MANX experiment. In this paper we continue design studies and comparison of these two concepts for the high field sections of a helical cooling channel. The results of magnetic and mechanical analysis as well as the superconductor choice and specifications will be presented and discussed.  
 
WEPD016 Electrical Quality Assurance of the Superconducting Circuits during LHC Machine Assembly cryogenics, dipole, pick-up, controls 2440
 
  • S. Russenschuck, D. Bozzini, V. Chareyre, O. Desebe, K. H. Mess
    CERN, Geneva
  • M. Bednarek, D. P. Dworak, E. Gornicki, P. Jurkiewicz, P. J. Kapusta, A. Kotarba, J. Ludwin, S. Olek, M. Talach, M. Zieblinski
    HNINP, Kraków
  • M. Klisch, B. Prochal
    AGH, Cracow
  Based on the LHC powering reference database, all-together 1712 superconducting circuits have been electrically wired and interconnected in the various cryogenic lines of the LHC machine. Continuity, magnet polarity, and the quality of the electrical insulation have been the main objectives of the Electrical Quality Assurance (ELQA) activities during the LHC machine assembly. Another activity aimed at ensuring the coherence between the reference database on one side, and the polarity conventions used for beam simulation and magnetic measurements. With the assembly of the LHC now completed, the paper reviews the methods and procedures established for the ELQA, as well as the employed time and resources. The qualification results will be presented with the emphasis on the detected electrical non-conformities and their possible impact on the performance of the LHC machine.  
 
WEPD017 Full Size Prototype Magnets for Heavy Ion Superconducting Synchrotron SIS100 at GSI: Status of Manufacturing and Test at JINR dipole, synchrotron, ion, antiproton 2443
 
  • A. D. Kovalenko, N. N. Agapov, A. V. Alfeev, A. V. Bychkov, A. V. Gromov, H. G. Khodzhibagiyan, G. L. Kuznetsov, A. Y. Starikov
    JINR, Dubna, Moscow Region
  • E. S. Fischer, G. Moritz, P. J. Spiller
    GSI, Darmstadt
  • A. V. Shabunov
    JINR/LHE, Moscow
  The SIS100 synchrotron is designed for acceleration of high intensity beams with a pulse repetition rate of 1 Hz. The use of superferric Nuclotron-type dipoles, quadrupoles and corrector magnets is planned in the accelerator magnetic system. The magnet coils are made of hollow NbTi composite cable cooled with two-phase helium flow at 4.5 K. The lattice comprises 108 dipoles, 168 quadrupoles and necessary set of steerer and multipole corrector magnets. We present recent results from the design and optimization of the SIS100 magnetic elements parameters. The status of manufacturing full size prototypes is presented. The essential features of the magnets production and the new test results are discussed.  
 
WEPD018 Commissioning of the LHC Current Leads cryogenics, dipole, controls, instrumentation 2446
 
  • A. Ballarino, S. A. March, K. H. Mess
    CERN, Geneva
  The powering of the LHC superconducting magnets relies on more than 3000 leads transporting the current from/to the cryogenic environment and rated at currents ranging from 60 A to 13000 A. The design of these leads, about 1000 of which are based on high temperature superconducting material, was entirely done at CERN, where prototype assemblies were also assembled and tested, while the series production was done in external laboratory and companies on the basis of build-to-print specification. This report summarizes the results of the tests performed during the commissioning of the LHC machine, when the leads underwent the thermal and electrical cycles necessary for the powering of the LHC superconducting circuits.  
 
WEPD027 A new cable insulation scheme improving heat transfer in Nb-Ti superconducting accelerator magnets superconducting-magnet, dipole, interaction-region, collider 2467
 
  • D. Tommasini, D. Richter
    CERN, Geneva
  The next applications of superconducting magnets for interaction regions of particle colliders or for fast cycled accelerators require dealing with large heat fluxes generated or deposited in the coils. Last year* we have anticipated the theoretical potential for a large improvement of heat transfer of state of the art Nb-Ti cable insulations in superfluid helium, such as the one used for the LHC superconducting magnets. In this paper we present and discuss new experimental results, confirming that a factor of 5 increase of the allowed heat flux from coil to coolant can be obtained with the new insulation topology while keeping a sound margin in the dielectric performance.

*M. La China, D. Tommasini. “Cable Insulation Scheme to Improve Heat Transfer to Superfluid Helium in Nb-Ti Accelerator Magnets,” MT-20, Philadelphia, USA, August 2007.

 
 
WEPD030 Feasibility Study of Combined Function Magnets for a NS-FFAG for Medical Applications dipole, proton, lattice, ion 2476
 
  • H. Witte, J. H. Cobb
    OXFORDphysics, Oxford, Oxon
  • K. J. Peach
    JAI, Oxford
  Non-scaling fixed field alternating gradient (NS-FFAG) accelerators combine a number of advantages, such as rapid particle acceleration and large acceptance. These features make NS-FFAGs particularly interesting for medical applications. NS-FFAGs could be used for cancer therapy, which may lead to significant size and cost reductions in comparison to other accelerator types. Cancer therapy with protons or carbon ions is advantageous in comparison to conventional radiation treatment amongst other things due to the higher biological effectiveness. This paper discusses the basic magnet design issues for the PAMELA project. PAMELA is a prototype proton/carbon-ion therapy facility.  
 
WEPD033 A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider dipole, sextupole, controls, multipole 2482
 
  • N. J. Sammut, R. Alemany-Fernandez, L. Bottura, G. Deferne, M. Lamont, J. Miles, S. Sanfilippo, M. Strzelczyk, W. Venturini Delsolaro, P. Xydi
    CERN, Geneva
  • N. J. Sammut
    University of Malta, Faculty of Engineering, Msida
  In order to reduce the burden on the beam-based feedback, the Large Hadron Collider (LHC) control system is embedded with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. In this paper we describe the rationale behind the tests, the procedures employed to characterize and power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.  
 
WEPD034 Main Field Tracking Measurement in the LHC Superconducting Dipole and Quadrupole Magnets dipole, controls, instrumentation, injection 2485
 
  • P. Xydi, R. Alemany-Fernandez, L. Bottura, G. Deferne, M. Lamont, J. Miles, R. Mompo, M. Strzelczyk, W. Venturini Delsolaro
    CERN, Geneva
  • N. J. Sammut
    University of Malta, Faculty of Engineering, Msida
  One of the most stringent requirements during the energy ramp of the Large Hadron Collider (LHC) is to have a constant ratio between dipole-quadrupole and dipole-dipole field so as to control the variation of the betatron tune and of the beam orbit throughout the acceleration phase, hence avoiding particle loss. To achieve the nominal performance of the LHC, a maximum variation of ±0.003 tune units can be tolerated. For the commissioning with low intensity beams, acceptable bounds are up to 30 times higher. For the quadrupole-dipole integrated field ratio, the above requirements translate in the tight windows of 6 ppm and 180 ppm, while for dipole differences between sectors the acceptable error is of the order of 10-4. Measurement and control at this level are challenging. For this reason we have launched a dedicated measurement R&D to demonstrate that these ratios can be measured and controlled within the limits for machine operation. In this paper we present the techniques developed to power the magnets during the current ramps, the instrumentation and data acquisition setup used to perform the tracking experiments, the calibration procedure and the data reduction employed.  
 
WEPD036 Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider radiation, extraction, shielding, linear-collider 2488
 
  • A. V. Zlobin, A. I. Drozhdin, V. Kashikhin, V. S. Kashikhin, M. L. Lopes, N. V. Mokhov
    Fermilab, Batavia, Illinois
  • A. Seryi
    SLAC, Menlo Park, California
  The upcoming and disrupted electron and positron beams in the baseline design of ILC interaction region are focused by compact FD doublets each consisting of two small-aperture superconducting quadrupoles and multipole correctors. These magnets will work in a severe radiation environment generated primarily by incoherent pairs and radiative Bhabhas. This paper analyzes the radial, azimuthal and longitudinal distributions of radiation heat deposition in incoming and disrupted beam doublets. Operation margins of baseline quadrupoles based on NbTi superconductor and direct wind technology as well as alternative designs based on NbTi or Nb3Sn Rutherford cables are calculated and compared. The possibilities of reducing the heat deposition in magnet coils using internal absorbers are discussed.  
 
WEPD037 Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade optics, luminosity, dipole, coupling 2491
 
  • A. V. Zlobin, J. A. Johnstone, V. Kashikhin, N. V. Mokhov, I. L. Rakhno
    Fermilab, Batavia, Illinois
  • S. Peggs, G. Robert-Demolaize, P. Wanderer, R. de Maria
    BNL, Upton, Long Island, New York
  After some years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. At the present time it is planned to perform the IR upgrade in two phases with the target luminosity for Phase I of ~2.5· 1034 cm-2s-1 and up to 1035 cm-2s-1 for Phase II. In Phase I the baseline 70-mm NbTi low-beta quadrupoles will nominally be replaced with larger aperture NbTi magnets and in Phase II with higher performance Nb3Sn magnets. U. S.-LARP is working on the development of large aperture high-performance Nb3Sn magnet technologies for the LHC Phase II luminosity upgrade. Recent progress also suggests the possibility of using Nb3Sn quadrupoles in the Phase I upgrade, improving the luminosity through an early demonstration of Nb3Sn magnet technology in a real accelerator environment. This paper discusses the possible hybrid optics layouts for Phase I upgrades with both NbTi and Nb3Sn quadrupoles, introducing magnet parameters and issues related to using Nb3Sn quadrupoles including magnet length and aperture limitations, field quality, operation margin, etc. Possible transition scenarios to Phase II are also discussed.  
 
WEPP003 Optics Flexibility in the LHC at Top Energy optics, injection, betatron, luminosity 2524
 
  • M. Aiba, H. Burkhardt, S. D. Fartoukh, M. Giovannozzi, S. M. White
    CERN, Geneva
  We report on studies of optics flexibility which allow for tune changes of the order of half a unit at top energy in the LHC. We describe how this could be done using one or several of the insertions IR2, IR4, IR8 or the main quadrupoles and discuss and compare the implications. This flexibility could be used to compensate for the loss in tune for high beta optics and may make it feasible to use the standard injection and ramp for these configurations. Potential further applications are also highlighted.  
 
WEPP012 Analysis of Optical Layouts for the Phase 1 Upgrade of the CERN Large Hadron Collider Insertion Regions optics, insertion, dipole, dynamic-aperture 2551
 
  • M. Giovannozzi, F. Borgnolutti, O. S. Brüning, U. Dorda, S. D. Fartoukh, W. Herr, M. Meddahi, E. Todesco, R. Tomas, F. Zimmermann
    CERN, Geneva
  • R. de Maria
    EPFL, Lausanne
  In the framework of the studies for the upgrade of the insertions of the CERN Large Hadron Collider, four optical layouts were proposed with the aim of reducing the beta-function at the collision point down to 25 cm. The different candidate layouts are presented. Results from the studies performed on mechanical and dynamic aperture are summarized, together with the evaluation of beam-beam effects. Particular emphasis is given to the comparison of the optics performance, which led to retain two promising layouts for further investigation and development.  
 
WEPP024 Non-linear Correction Schemes for the Phase 1 LHC Insertion Region Upgrade and Dynamic Aperture Studies dynamic-aperture, resonance, optics, insertion 2569
 
  • R. Tomas, M. Giovannozzi, R. de Maria
    CERN, Geneva
  The Phase 1 LHC Interaction Region (IR) upgrade aims at increasing the machine luminosity essentially by reducing the beam size at the Interaction Point (IP). This requires a total redesign of the full IR. A large set of options have been proposed with conceptually different designs. This paper reports on a general approach for the compensation of the multipolar errors of the IR magnets in the design phase. The goal is to use the same correction approach for the different designs. The correction algorithm is based on the computation of the IR transfer map. Its performance is tested using the dynamic aperture as figure of merit.  
 
WEPP025 Optics Correction in the LHC dipole, closed-orbit, optics, betatron 2572
 
  • R. Tomas, M. Aiba, G. Vanbavinckhove
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • A. Morita
    KEK, Ibaraki
  Optics correction in the LHC is challenged by the tight aperture constrains and the demand of a highly performing BPM system. To guarantee that the LHC optics remains within a maximum allowable beta-beating of 20% several methods are being investigated through computer simulations and experiments at existing hadron machines. A software package to consolidate the implementation of the various techniques during LHC operation is underway (or nearing completion)  
 
WEPP028 Flexible Momentum Compaction Return Arcs for RLAs linac, acceleration, focusing, lattice 2578
 
  • D. Trbojevic
    BNL, Upton, Long Island, New York
  • S. A. Bogacz
    Jefferson Lab, Newport News, Virginia
  • R. P. Johnson
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia, Illinois
  Neutrino Factories and Muon Colliders require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses a single Linac and teardrop return arcs can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity and the cost of the return arcs is appropriate. Flexible Momentum Compaction (FMC) lattice designs for the teardrop return arcs provide sufficient momentum acceptance to allow multiple passes of each sign of muon in one string of magnets to improve cost-effectiveness.  
 
WEPP031 Energy Deposited in the High Luminosity Inner Triplets of the LHC by Collision Debris luminosity, insertion, superconducting-magnet, kaon 2587
 
  • E. Y. Wildner, F. Cerutti, A. Ferrari, C. Hoa, J.-P. Koutchouk
    CERN, Geneva
  • F. Broggi
    INFN/LASA, Segrate (MI)
  • N. V. Mokhov
    Fermilab, Batavia, Illinois
  The 14 TeV center of mass proton-proton collisions in the LHC produce not only interesting events for physics but also debris ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of the deposited heat, that has to be transferred to the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC baseline are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the comparison and consolidation of the calculations, a dedicated study of a simplified model has been made, showing satisfactory agreement.  
 
WEPP032 Parametric Study of Energy Deposition in the LHC Inner Triplet for the Phase 1 Upgrade interaction-region, dipole, insertion, luminosity 2590
 
  • E. Y. Wildner, F. Borgnolutti, F. Cerutti, M. Mauri, A. Mereghetti, E. Todesco
    CERN, Geneva
  To be able to make a global parametric analysis and to have some basic understanding of the influence of critical parameters, scaling laws may be of help. For the design of the LHC collision insertion regions, one of the critical parameters is the energy deposited in the insertion superconducting magnet coils, to avoid magnet quench, too heavy load on the cryogenic system, and degradation of the superconductor due to radiation. The influence on energy deposition of some key parameters for magnet design, such as the magnet apertures, the magnet lengths and positions, has been studied for some specified optical beta-value at the collision point.  
 
WEPP042 An Improved Design for a SuperB Interaction Region emittance, interaction-region, luminosity, background 2614
 
  • M. K. Sullivan, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • S. Bettoni
    CERN, Geneva
  • M. E. Biagini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • E. Paoloni
    University of Pisa and INFN, Pisa
  We present an improved design for a SuperB interaction region. The new design attempts to minimize the bending of the two colliding beams which results from shared magnetic elements near the Interaction Point (IP). The total crossing angle at the IP is increased from 34 mrad to 50 mrad and the distance from the IP to the first quadrupole is increased. Although the two beams still travel through this shared magnet, these changes allow for a new a new magnetic field design with a septum which gives the magnet two magnetic centers. This greatly reduces the beam bending from this shared quadrupole and thereby reduces the radiative bhabha background for the detector as well as any beam emittance growth from the bending. We decribe the new design for the interaction region.  
 
WEPP046 Final Focus for the Crab-waist Tau-charm Factory luminosity, factory, interaction-region, collider 2623
 
  • I. N. Okunev
    BINP, Novosibirsk
  • A. Bogomyagkov, E. B. Levichev, P. A. Piminov, S. V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk
  In the crab-waist colliders design of the final focus region is a matter of primary importance. The paper describes analysis of final focus quadrupole design and results of particles tracking through the quadrupoles.  
 
WEPP047 Optics Implications of Implementing Nb3Sn Magnets in the LHC Phase I Upgrade optics, luminosity, focusing, lattice 2626
 
  • J. A. Johnstone, V. Kashikhin, N. V. Mokhov, A. V. Zlobin
    Fermilab, Batavia, Illinois
  CERN has encouraged the US-LARP collaboration to participate in Phase I of the LHC luminosity upgrade by analyzing the benefits gained by using Nb3Sn technology to replace the functionality of select magnets CERN is commited to construct using NbTi magnets. Early studies have shown that the much higher gradients (shorter magnetic lengths) and energy load of Nb3Sn magnets compared to their NbTi counterpars is very favorable – allowing the insertion of additional absorbers between Q1 & Q2, for example. This paper discusses the relative merits of the NbTi and Nb3Sn options.  
 
WEPP048 Recirculating Linear Muon Accelerator with Ramped Quadrupoles linac, optics, focusing, acceleration 2629
 
  • S. A. Bogacz
    Jefferson Lab, Newport News, Virginia
  • R. P. Johnson
    Muons, Inc, Batavia
  Neutrino Factories and Muon Colliders require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses a single Linac and teardrop return arcs can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We are developing the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed Linac quadrupoles to allow the maximum number of passes.

Supported in part by DOE STTR grant DE-FG02-05ER86253

 
 
WEPP056 Aperture Restriction Localisation in the LHC Arcs using an RF Mole and the LHC Beam Position Measurement System vacuum, dipole, monitoring, radio-frequency 2644
 
  • O. R. Jones, J. Albertone, S. Bartolome-Jimenez, C. Boccard, T. Bogey, P. B. Borowiec, E. Calvo, F. Caspers, M. Gasior, J. L. Gonzalez, B. Jenninger, L. K. Jensen, T. Kroyer, S. Weisz
    CERN, Geneva
  Ensuring that the two 27km beam pipes of the LHC do not contain aperture restrictions is of utmost importance. Most of the ring is composed of continuous cryostats, so any intervention to remove aperture restrictions when the machine is at its operating temperature of 1.9K will require a substantial amount of time. On warming-up the first cooled sector, several of the sliding contacts which provide electrical continuity for the image current between successive sections of the vacuum chamber were found to have buckled into the beam pipe. This led to a search for a technique to verify the integrity of a complete LHC arc (~3km) before any subsequent cool-down. In this paper the successful results from using a polycarbonate ball fitted with a 40MHz RF transmitter will be presented. Propulsion of the ball is achieved by sucking filtered air through the entire arc, while its progress is traced every 54m via the LHC beam position measurement system which is auto-triggered by the RF transmitter on passage of the ball. Reflectometry at frequencies in the 4-8 GHz range can cover the gaps between beam position monitors and could therefore be used to localise a ball blocked by an obstacle.  
 
WEPP057 Fitting Algorithms for Optical and Beam Parameters in Transfer Lines with Application to the LHC Injection Line TI2 emittance, optics, extraction, injection 2647
 
  • E. Benedetto, I. V. Agapov, F. Follin, V. Kain
    CERN, Geneva
  As part of the commissioning with beam of the transfer line TI2 from the SPS to the LHC, a series of optics measurements has been conducted. The paper presents the results in terms of Twiss parameters (including the dispersion), emittance and momentum spread obtained from the combination of trajectory and beam profile measurements. Profiting from the redundancy of monitors, there is a possibility of applying different fitting algorithms to retrieve beam parameters and to extract information on the optics of the line. The results from the different fit methods applied to the data will be compared with the expected values and cross-checked with independent measurements with a particular emphasis on the error analysis.  
 
WEPP063 R-matrices of the Fast Beam Extraction Section of AGS extraction, kicker, synchrotron, optics 2662
 
  • N. Tsoupas, L. Ahrens, J. W. Glenn, W. W. MacKay, T. Satogata
    BNL, Upton, Long Island, New York
  The Fast Beam Extraction (FEB) system of the Alternating Gradient synchrotron (AGS) extracts the beam bunches from AGS into the AGS-to-RHIC (AtR) beam transfer line, and the extracted bunches are injected into the Relativistic Heavy Ion Collider (RHIC) synchrotron. In a particular section of the beam extraction line the beam bunches are transported through the fringe field region of three main AGS magnets. Optical characteristics of this section change with trajectory and momentum. Therefore the calculation of the R-matrices in this part of the extraction line requires special attention. To describe accurately the R-matrices, the magnetic field of the AGS main magnets was measured on the median plane of the AGS magnet in both, the circulating beam region and the fringe field region, where the extracted beam is transported. Using these magnetic field maps we describe the procedure we use to calculate the R-matrices at the beam extraction region. These R-matrices are used to calculate the beam parameters at the starting point of the AtR beam transfer line and the required quadrupole settings to match to RHIC’s acceptance.  
 
WEPP068 Impact Distribution of the Beam Losses at the LHC Collimators in Case of Magnet Failures injection, dipole, simulation, collimation 2674
 
  • A. Gomez Alonso
    CERN, Geneva
  During LHC operation, magnet failures may affect the beam optics leading to proton losses in the collimators. These losses, with about 360MJ of stored energy per beam at nominal collision operation, are potentially dangerous for the accelerator equipment. The LHC Machine Protection Systems ensure that the beam is extracted safely before these losses can produce any damage. As a magnet failure develops, so does the distribution of the lost particles, longitudinally along the ring as well as transversally at each collimator. The transversal impact distributions of lost particles at the most affected collimators and their evolution with time have been studied for representative magnet failures in the LHC. It has been found that the impact distribution at a given collimator can be approximated by an exponential function with time-dependent parameters. The average impact parameter ranges from about 7 to 620 μm for the cases studied.  
 
WEPP075 Effects of the Cryogenic Operational Conditions on the Mechanical Stability of the FLASH Linear Accelerator Modules electron, cryogenics, linac, controls 2692
 
  • R. Amirikas, A. Bertolini, J. Eschke, M. Lomperski
    DESY, Hamburg
  The Free electron LASer in Hamburg (FLASH) accelerating modules have been instrumented with vertical geophones on their corresponding quadrupoles and their vacuum vessels. The signals from these geophones are constantly monitored and the data are integrated into the control system of the accelerator. Therefore, vibration stability studies of a string of superconducting accelerating modules, in various cryogenic conditions, are now possible for the first time. The results of this experiment will be an important reference for both the European X-ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) linear accelerators which are expected to take advantage from the separation between the feed lines of the 4.5 K shield and of the quadrupole, which will operate in a 2 K Helium-II bath.  
 
WEPP079 Beam Dynamics Layout and Loss Studies for the FAIR P-Injector emittance, proton, linac, beam-losses 2701
 
  • G. Clemente, L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  • U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
  The development of coupled CH-DTL cavities represents a major achievement in the development of the 325 MHz, 70 MeV FAIR P-Injector. This coupled-cavity solution has important consequencies on the beam dynamics design which has to be adapted to this new kind of resonator. In combination with the KONUS beam dynamics, this solution allows to achieve all the requirements of the FAIR project in terms of beam intensity and quality reducing at the same time the number of focusing elements along the machine. A layout based on 6 CH coupled modules is presented and compared with a solution composed of three coupled modules up to 35 MeV followed by three long single resonators up to the energy of 70 MeV. A redesigned 35 MeV intertank section became necessary to avoid beam losses and emittance growth. Finally, the effect of random mistakes such as quadrupole misalignments and phase as well as voltage setting errors have been investigated to determine the tolerances of mechanical construction and rf controls during operation.  
 
WEPP116 Muon Decay Ring Study emittance, closed-orbit, dynamic-aperture, storage-ring 2770
 
  • D. J. Kelliher, S. Machida, C. R. Prior, G. H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • F. Meot
    CEA, Gif-sur-Yvette
  Three different muon decay ring configurations are being considered for a neutrino factory. A racetrack design is the current ISS baseline (as it allows greater flexibility in the choice of detector sites) but triangular and bow-tie rings have advantages in neutrino production rates*. Using tracking code simulations, a study of the latter two designs is carried out. Since spin depolarisation measurements have been proposed for muon energy calibration**, spin tracking is included in this study. Dynamic aperture is important and is also calculated.

*International Scoping Study report, 2006.
**A Blondel et al. (editors), ECFA/CERN studies of a European Neutrino Factory Complex, CERN-2004-002 and EFCA/04/230, 13 April, 2004.

 
 
WEPP122 Commissioning Status of the MICE Muon Beamline target, proton, dipole, emittance 2782
 
  • K. Tilley
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  It is planned to install a Muon Ionisation Cooling Experiment (MICE) at the ISIS facility at Rutherford Appleton Laboratory. This experiment will be the first demonstration of ionisation cooling as a means to reduce the large transverse emittances expected in the early stages of a Neutrino Factory. A new muon beamline has been installed on ISIS, in order to supply muons of characteristic energy and emittance to the experiment. This paper gives an overview of the goals and design of the beamline, the detectors used to characterise the beam, and the techniques and results which have been obtained during its first operating periods in 2008.

K. Tilley on behalf of the MICE Collaboration.

 
 
WEPP123 Isochronous Pion Decay Channel for Enhanced Muon Capture target, factory, collider, dipole 2785
 
  • C. Y. Yoshikawa, C. M. Ankenbrandt, D. V. Neuffer, M. Popovic, K. Yonehara
    Fermilab, Batavia, Illinois
  • R. J. Abrams, M. A.C. Cummings, R. P. Johnson
    Muons, Inc, Batavia
  • Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
  Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced in tertiary beams into a diffuse phase space. To make useful beams, the muons must be rapidly cooled before they decay. A promising new concept for the collection and cooling of muon beams is being investigated, namely, the use of a nearly Isochronous Helical Transport Channel (IHTC) to facilitate capture of muons into RF bunches. Such a distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. We describe the IHTC and provide simulations demonstrating isochronicity, even in the absence of RF and absorber.  
 
WEPP139 The CTF3 Two-beam Test-stand Installation and Experimental Program dipole, acceleration, vacuum, diagnostics 2821
 
  • V. G. Ziemann, T. J.C. Ekelöf, M. Johnson, R. J.M. Y. Ruber
    UU/ISV, Uppsala
  • H.-H. Braun, S. Doebert, G. Geschonke, G. Riddone, J. P.H. Sladen, I. Syratchev, W. Wuensch
    CERN, Geneva
  The Two-beam Test-stand in CTF3 will be used to investigate the power-generation and accelerating structures for the Compact Linear Collider CLIC. We report on its design and construction which was recently completed and discuss the imminent commissioning phase as well as the following experimental program that initially will be devoted to the test of power generation structures in the drive-beam.  
 
WEPP146 Generation of Electron Microbunches Trains with Adjustable Sub-picosecond Spacing for PWFA and FEL applications electron, plasma, laser, emittance 2830
 
  • P. Muggli, E. Kallos
    USC, Los Angeles, California
  • M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
  We demonstrate that trains of subpicosecond electron microbunches, with subpicosecond spacing, can be produced by placing a mask in a large dispersion region of the beam line where the beam transverse size is dominated by the correlated energy spread. The particles are selected based on the scattering of their emittance at the mask. The electrons that hit the solid arts of the mask are subsequently lost. The mask spatial pattern is converted into a time pattern in the dispersion-free region of the beam line. The experiment was performed with the Brookhaven National Laboratory Accelerator Test Facility 60 MeV beam. We show that the number, length, and spacing of the microbunches can be controlled through the parameters of the beam and the mask. Trains with one to eight equidistant microbunches are produced. The microbunches spacing is adjusted in the 100 to 300 microns or 300 fs to 1 ps range and comparable microbunch length. The train structure is measured using CTR interferometry, and is stable in time and energy. Such microbunch trains can be further compressed and accelerated, and have applications to free electron lasers (FELs) and plasma wakefield accelerators (PWFAs).  
 
WEPP156 Spherical Aberrations-free Wiggler wiggler, sextupole, multipole, octupole 2853
 
  • A. A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  We represented details of design of a wiggler with linear piecewise longitudinal field dependence. This type of field distribution eliminates spherical aberrations in wiggler. This wiggler can be recommended for usage in cooler rings including ILC ones.  
 
WEPP166 Comparison of Collimator Wakefields Formulae dipole, impedance, electron, vacuum 2877
 
  • A. M. Toader, R. J. Barlow
    UMAN, Manchester
  There is an extensive literature on transverse wakefield kick factors in collimators. We present a compendium of the formulae and discuss their agreement and disagreement with each other and with experimental results.  
 
THPC001 Synthesis of Optimal Nanoprobe (Linear Approximation) focusing, ion, target, controls 2969
 
  • S. N. Andrianov, A. A. Chernyshev, N. S. Edamenko, Yu. V. Tereshonkov
    St. Petersburg State University, Applied Mathematics & Control Processes Faculty, St. Petersburg
  High energy focused ion (proton) micro- and nanoprobes are intensively integrated to powerful analytical tool for different scientific and technological aims. Requirements for beam characteristics of similar focusing systems are extremely rigid. The value of demagnification for micro- and nanoprobes is the main optimality criteria, and as desirable value are in the range from 50 to 100 or even more. In the paper, we reconsider the basic properties of first order focusing systems from an optimal viewpoint. The matrix formalism allows us to formulate a nonlinear programming problem for all parameters of guiding elements. For this purpose there are used computer algebra methods and tools as the first step, and then some combination of special numerical methods. As a starting point for nanoprobe we consider so called “russian quadruplet”. On the next steps, we also investigate other types of nanoprobes. Some graphical and tabular data for nanoprobe parameters are cited as an example.  
 
THPC002 Synthesis of Optimal Nanoprobe (Nonlinear Approximation) octupole, focusing, controls, multipole 2972
 
  • S. N. Andrianov, N. S. Edamenko, Yu. V. Tereshonkov
    St. Petersburg State University, Applied Mathematics & Control Processes Faculty, St. Petersburg
  This paper is a continuation of the paper devoted to synthesis of optimal nanoprobe in linear approximation. Here the main goal is the optimization of nanoprobe including nonlinear aberrations of different nature up to third order. The matrix formalism for Lie algebraic methods is used to account for nonlinear aberrations. This method gives a possibility to consider nonlinear effects separately. Here we mean that a researcher can start or remove different kind of nonlinearities. This problem is separated into several parts. On the first step, we consider possibilities of additional optimization for some structures, selected on the step of linear approximation. The most of aberrations have harmful character, and their effect must be maximally decreased. Therefore, on the next steps, some we use analytical and numerical methods for generation of nonlinear corrected elements. The matrix formalism allows reducing the correction procedure to linear algebraic equations for aberration coefficients. Some examples of corresponding results are given.  
 
THPC003 Sum of Emittance in the Presence of a Linear Coupling emittance, coupling, betatron, focusing 2975
 
  • M. Aslaninejad, H. Ghasem
    IPM, Tehran
  In this article, the influence of linear coupling due to skew quadrupoles on the transverse equations of motion and emittances in accelerators is studied*. We first introduce the definition of the transverse single particle emittances using the Floquet transformation in alternating gradient as well as the constant focusing rings, then in the presence of the linear coupling, due to skew quadrupoles we introduce the coupled differential equations governing the particles motion and try to solve them by a direct method and also using the normal modes of motion to find the relation between the two transverse emittances. Based on smooth approximation and using the normal modes** we solve the equations of motion of a test charged particle and derive two new formulas for the sum of the emittances, and the conditions under which this sum is invariant.

*P. J.Bryant, CERN Acclerator School, CERN, PROCEEDINGS, 94-01, Vol. I.
**E. Metral, CERN/PS 2001-066(AE).

 
 
THPC004 Chromatic and Wakefield Effects in PSI-XFEL Linac linac, emittance, electron, injection 2978
 
  • B. Grigoryan, G. A. Amatuni, V. M. Tsakanov
    CANDLE, Yerevan
  • R. J. Bakker, Y. Kim, M. Pedrozzi, J.-Y. Raguin
    PSI, Villigen
  Detailed knowledge about the wakefield and chromatic effects on electron beam emittance is an important issue to preserve the natural emittance of the beam in linear accelerators for FEL. The study of these two effects for beam and accelerator components imperfections in PSI-XFEL S-Band linear accelerator is presented. Emittance dilution caused by the beam coherent oscillations, accelerating section and quadrupole misalignments is analysed. The residual chromatic emittance dilution of the corrected trajectory is evaluated.  
 
THPC005 Conceptual Design of Booster Synchrotron forTPS booster, emittance, lattice, storage-ring 2981
 
  • H. C. Chao, H.-P. Chang, P. J. Chou, C.-C. Kuo, G.-H. Luo, H.-J. Tsai, J. W. Tsai
    NSRRC, Hsinchu
  A six-folded concentric booster of 489.6 m with non-dispersive straights of length 5.8 m is designed for TPS storage ring of 518.4 m. The structure consists of modified FODO lattice with defocusing quadrupole fields built in bending magnets. The designed emittance is less than 10 nm-rad at 3 GeV. In this paper, the phenomenon during the ramping from 150 MeV to 3.0 GeV including the eddy current effect, the evolutions of beam emittance, energy spread, and bucket acceptance, will be discussed. In addition, closed orbit correction scheme, aperture request as well as injection and extraction schemes are described.  
 
THPC007 Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II permanent-magnet, emittance, lattice, coupling 2987
 
  • F.-J. Decker, S. D. Anderson, D. Kharakh, M. K. Sullivan
    SLAC, Menlo Park, California
  The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality a Biot Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced.  
 
THPC008 Constants and Pseudo-constants of Coupled Beam Motion in the PEP-II Rings betatron, coupling, sextupole, lattice 2990
 
  • F.-J. Decker, W. S. Colocho, M.-H. Wang, Y. T. Yan, G. Yocky
    SLAC, Menlo Park, California
  Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change then. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.  
 
THPC010 Trajectory Correction in the Fermi@Elettra Linac linac, electron, simulation, lattice 2993
 
  • S. Di Mitri
    ELETTRA, Basovizza, Trieste
  • A. Zholents
    LBNL, Berkeley, California
  The effect of the static magnetic field errors and misalignment of the magnetic elements and linac modules on the beam trajectory in the Fermi@elettra linac [1] has been studied. Analytical description has been used to guide simulations of the trajectory correction using three different techniques. A control over the residual R56 transfer matrix element along the linac lattice has been applied. The importance of the linac structural transverse wake field for a reliable prediction of the bunch centroid dynamics has been demonstrated. Transverse deviations of bunch slices along the electron bunch induced by the wake fields have been calculated.

[1] S. Di Mitri, ST/M–07/01 (2007)

 
 
THPC011 The CR-RESR Storage Ring Complex of the FAIR Project dynamic-aperture, extraction, antiproton, injection 2996
 
  • A. Dolinskii, O. E. Gorda, S. A. Litvinov, F. Nolden, C. Peschke, I. Schurig, M. Steck
    GSI, Darmstadt
  • D. Obradors-Campos
    MICINN, Madrid
  In frame of the FAIR project (at GSI, Germany) the CR-RESR storage ring complex has been designed for efficient cooling, accumulation and deceleration of antiproton and rare isotopes beams. The complex consists of the Collector Ring (CR) and the accumulator / decelerator ring RESR. The large acceptance CR will be operated at three different optical modes, two of them providing fast pre-cooling of antiprotons and rare isotopes. This ring will be also used as an instrument for mass measurements of very short-lived nuclei when tuned to an isochronous mode. The RESR will be used as accumulator of the antiprotons by means of the stochastic cooling technique and as a decelerator of rare isotopes. The structure of the CR and RESR lattices and its ion optical properties are described in this contribution. The beam dynamics of these rings at different operation scenario are discussed.  
 
THPC015 Computational Beam Dynamics Studies for Improving the Ring Injection and Extraction Systems in SNS scattering, injection, septum, coupling 3008
 
  • J. A. Holmes, S. M. Cousineau, M. A. Plum, J. G. Wang
    ORNL, Oak Ridge, Tennessee
  The ring injection and extraction systems must function as designed in order for the Spallation Neutron Source (SNS) to achieve its specified performance. In commissioning and early operations we have encountered problems that have been traced to these systems. We experienced high beam losses in and around the injection dump, the rectification of which has necessitated significant study and development by a multidisciplinary team. The results include a number of enhancements of existing features and the addition of new elements and diagnostics. The problem in the extraction region stems from tilted beam distributions observed in the ring-to-target beam transport line (RTBT) and on the target, thus complicating the control of the beam-on-target distribution. This indicates the inadvertant introdution of x-y beam coupling somewhere upstream of the RTBT. The present paper describes computational studies, using the ORBIT Code, addressed at the detailed understanding and solution of these problems.  
 
THPC016 Beam Optics of the PEFP Modified Beam Lines proton, optics, dipole, linac 3011
 
  • J.-H. Jang, Y.-S. Cho, B. Chung, H.-J. Kwon
    KAERI, Daejon
  The 100 MeV Linac of the Proton Engineering Frontier Project (PEFP) is designed to supply 20 MeV and 100 MeV proton beams to user groups. In order to extract 20 MeV proton beams, a 45 degrees bending magnet is installed after 20 MeV DTL tank. The extracted proton beams are separated into five target rooms via a AC bending magnets. For 100 MeV beams, we use the same distribution schemes. Recently, the layout of the beam lines are modified to be short and compact. The work summaries the beam optics calculation of the modified beam lines.  
 
THPC017 Optimisation of a Beam Transfer FODO Line vacuum, optics, emittance, beam-losses 3014
 
  • J. B. Jeanneret, H.-H. Braun
    CERN, Geneva
  With in view the design of the CLIC long transfer lines, we developed a formal approach for the optimisation of a straight FODO line. Optimum phase advance and cell length depending on beam parameters are derived for power consumption, overall cost and sensitivity to quadrupole misalignment.  
 
THPC021 Investigations on a Q0 Doublet Optics for the LHC Luminosity Upgrade luminosity, optics, closed-orbit, alignment 3023
 
  • E. Laface, W. Scandale, E. Y. Wildner
    CERN, Geneva
  • C. Santoni
    Université Blaise Pascal, Clermont-Ferrand
  The Q0 scheme of the LHC insertion region is based on the introduction of a doublet of quadrupoles at 13 meters from IP. We present here the doublet optics and the magnets layout such as gradients, lengths, positions and apertures. In this scheme we show the gain in luminosity and chromaticity, with respect to a nominal layout with β*=0.25 (i.e. LHC phase 1 upgrade) and β*=0.15 m, due to a smaller beta-max. We show the alignment tolerance and the energy deposition issues, in Q0A-Q0B. We also consider shielding the magnets with liners. The capability of Q0 optics to limit the β function could be exploited after the LHC Phase 1 upgrade in order to reduce the β* below 0.25 m, leaving the upgraded triplet unchanged.  
 
THPC025 Further Advances in Understanding and Optimising Beam Dynamics in the Diamond Storage Ring dynamic-aperture, lattice, coupling, storage-ring 3032
 
  • I. P.S. Martin, R. T. Fielder, E. C. Longhi, B. Singh
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
  We report the results of recent beam dynamics studies of the Diamond storage ring. These studies were aimed at both improving our understanding of the machine operation as well as establishing a reliable, well corrected lattice with long lifetime and high injection efficiency suitable for later top-up operation. Particular attention has been given to measuring and controlling the linear optics of the lattice, to determining the various contributions to the overall beam lifetime and to optimising the sextupole strengths for good on and off momentum dynamic aperture. For each topic, detailed comparisons with model predictions are also described.  
 
THPC026 Measurement of Complex Coupling Driving Term of Linear Difference Resonance Using Turn-by-turn Beam Position Monitors coupling, betatron, resonance, storage-ring 3035
 
  • M. Masaki, K. Soutome, S. Takano, M. Takao
    JASRI/SPring-8, Hyogo-ken
  X-Y emittance coupling is one of the important measures of beam quality in an electron storage ring for high brilliant light source. We have developed a method of measuring complex coupling driving term C of linear difference resonance using turn-by-turn beam position monitors (BPMs), assuming the perturbation theory with the single resonance approximation. Since both amplitude and phase of the driving term are derived, we can uniquely determine the strength of two-degree-of-freedom skew quadrupole magnets for correction of the linear resonance coupling. Before the correction, the driving term was measured by the developed method at the SPring-8 storage ring where small skew quadrupole components are distributed as error magnetic fields. On the other hand, the linear resonance coupling was corrected using the counter skew quadrupole magnets, the strength of which was adjusted to minimize vertical beam size near the linear difference resonance. The measured driving term C was broadly consistent with the counter term calculated from the adjusted strength of skew quadrupole magnets for the coupling correction.  
 
THPC028 High Energy Beam Transport Line for the IFMIF-EVEDA Accelerator diagnostics, emittance, beam-transport, dipole 3041
 
  • C. Oliver, B. Brañas, A. Ibarra, I. Podadera Aliseda
    CIEMAT, Madrid
  • N. Chauvin, A. Mosnier, D. Uriot
    CEA, Gif-sur-Yvette
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator which will verify the validity of the design of the future IFMIF accelerator. A transport line is necessary to handle the high current beam from the DTL exit up to the beam dump. This line must produce the beam expansion to obtain an acceptable power density at the beam dump. Therefore the design of the transport line must consider the geometry and power handling capacity of the beam dump, the space requirements for diagnostics and the restrictions on the maximum length of the line. In addition, a bending magnet is required in order to avoid excessive irradiation of the diagnostics and line elements by neutrons and gammas produced at the beam dump and to perform energy spread measurements. In this contribution, the preliminary design of the high energy beam transport line will be presented. The results of a sensitivity study to the input beam and line elements errors will also be discussed.  
 
THPC033 Global Optimization of the Magnetic Lattice Using Genetic Algoritihms lattice, emittance, storage-ring, insertion 3050
 
  • D. Robin, F. Sannibale, C. Steier, W. Wan, L. Yang
    LBNL, Berkeley, California
  The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straight forward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. In this paper we employ a technique we call GLASS (GLobal scan of All Stable Settings) that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is very fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices - the triple bend achromat of the ALS and the double bend achromat of CAMD. We extend the analysis to more complex lattices using multiobjective evolutionary analysis.  
 
THPC034 Correction the Round Beam Lattice of VEPP-2000 Collider Using Orbit Response Technique closed-orbit, lattice, dipole, multipole 3053
 
  • A. L. Romanov, D. E. Berkaev, A. N. Kirpotin, I. Koop, E. Perevedentsev, Yu. A. Rogovsky, P. Yu. Shatunov, D. B. Shwartz
    BINP SB RAS, Novosibirsk
  Round colliding beams option in VEPP-2000 puts a number of strict requirements on the collider lattice. Orbit Response Matrix (ORM) technique is a versatile tool for lattice analysis and correction. For linear optical function study and correction, the orbit response to the dipole correctors is collected and processed, while for the orbit correction the quadrupole trimming is used. Theoretical and experimental responses of closed orbit on the same perturbations are compared to determine the most probable deviations of chosen parameters from its project values.  
 
THPC040 Comparative Analysis of Different Kinds of Effects in the Nanoprobe focusing, controls, target, ion 3065
 
  • Yu. V. Tereshonkov, S. N. Andrianov
    St. Petersburg State University, Applied Mathematics & Control Processes Faculty, St. Petersburg
  Different kinds of parasitic effects in a nanoprobe are investigated. In this paper we consider the focusing system of nanoprobe, which consists of quadrupole lenses, but some results are also discussed for solenoids as focusing elements. The results of the similar analysis make it possible to design a number of goal-seeking strategies for selecting the optimal beam line structure. The influence of different linear and nonlinear aberrations is investigated using analytical and numerical methods and tools. For this purpose we present the beam line propagator based on a matrix formalism for Lie algebraic tools. In conclusion, some results of fulfilled modeling are analyzed.  
 
THPC041 Closed Orbit Correction and Orbit Stabilization Control for TPS Storage Ring emittance, closed-orbit, dipole, radiation 3068
 
  • H.-J. Tsai, H.-P. Chang, H. C. Chao, P. J. Chou, K. T. Hsu, C.-C. Kuo, W. T. Liu, J. W. Tsai
    NSRRC, Hsinchu
  TPS is a 3 GeV synchrotron storage ring proposed in Taiwan. The designed natural emittance with slightly positive dispersion in the straight sections is less than 2 nm-rad. With 1% emittance coupling, the beam size in horizontal and vertical plane are 120/5 micron in the short straight sections, respectively. The beam position stability requirements are 10% of the beam sizes, i.e., 12/0.5 micron in the horizontal/vertical plane. The closed orbit distortions due to alignment displacement and magnetic field errors are simulated. The distribution of beam position monitors and the location of slow and fast correctors are proposed and the level of achievement is shown.  
 
THPC042 Uncoupled Achromatic Tilted S-bend dipole, electron, controls, coupling 3071
 
  • N. Tsoupas, A. Kayran, V. Litvinenko, W. W. MacKay
    BNL, Upton, Long Island, New York
  A particular section of one of the electron beam transport lines, to be used in the e-cooling project* of the Relativistic Heavy Ion Collider (RHIC), is constrained to bend the beam simultaneously in both the horizontal and vertically planes and also be achromatic in both planes. The simultaneous horizontal and vertical achromatic bend is accomplished by rotating, about the longitudinal axis of the beam, the dipole and quadrupole elements of this section of the line. However such a rotation of the magnetic elements may couple the transported beam through the first order beam transfer matrix (linear coupling). In this paper we investigate for a sufficient condition, that the first order transport matrix (R-matrix) can satisfy, under which such a section of a beam transfer line is both achromatic and also constrains the beam at the exit of the line to emerge linearly uncoupled. We also provide a complete solution for the beam optics, of this part of the beam transfer line, which satisfies achromaticity and no first order beam coupling.

*htpp://www.bnl.gov/cad/eRhic/Documents/AD_Position_Paper_2007.pdf

 
 
THPC047 Studies of Losses During Continuous Transfer Extraction at the CERN proton Synchrotron extraction, simulation, septum, proton 3083
 
  • S. S. Gilardoni, J. Barranco
    CERN, Geneva
  Proton beams can be extracted from the CERN-PS at 14 GeV/c on five turns, using a technique called Continuous Transfer (CT). In this case, large losses due to particles scattered by an electrostatic septum used to slice the beam on five turns are observed in straight sections where the machine aperture is large enough to accommodate the circulating beam without any loss. These losses limit the maximum intensity deliverable to the SPS, like for the CERN to Gran Sasso (CNGS) neutrino program, because of the large irradiation of the site outside the PS tunnel and at the CERN fence. New simulation tools for a parametric study have been developed to improve the understanding of the observed loss pattern. A proposed solution to displace the losses in less critical section of the machine has been simulated and implemented in the CERN-PS. Simulations and experimental results of the loss study and reduction are presented.  
 
THPC048 Study of Beam Losses at Transition Crossing at the CERN PS optics, beam-losses, proton, dipole 3086
 
  • S. S. Gilardoni, S. Aumon, M. Martini
    CERN, Geneva
  A series of studies has been carried out to understand and alleviate the beam losses in the CERN PS proton Synchrotron. In particular, losses appear at transition crossing during the pulsing of special quadrupoles used to create a gamma jump scheme and which causes a large optics and orbit distortion. After a brief summary of the gamma jump scheme at the PS, experimental and simulation results about the loss studies and reduction are presented.  
 
THPC053 Turn-by-turn Data Analysis at the Diamond Storage Ring betatron, storage-ring, optics, resonance 3101
 
  • R. Bartolini, I. P.S. Martin, G. Rehm, J. Rowland
    Diamond, Oxfordshire
  The Diamond Storage Ring has been recently equipped with a set of two pinger magnets that can excite betatron oscillations to large amplitudes in both planes of motion. In conjunction with the turn-by-turn capabilities available at all BPMs, the system provides a powerful diagnostic tools for the characterisation of the linear and non-linear beam dynamics of the electron beam in the storage ring. We report the first results on the application of the Frequency Map Analysis and the measurement of the resonant driving terms at the Diamond Storage Ring.  
 
THPC054 Transportation of Decay Products in the Beta-beam Decay Ring dipole, ion, lattice, beam-transport 3104
 
  • A. Chancé, J. Payet
    CEA, Gif-sur-Yvette
  The principle of the neutrino production in the beta-beams relies on the beta-decay of the radioactive ions Neon 18 and Helium 6 in a storage ring. After decaying, the daughter particles have their magnetic rigidity significantly changed (-33% for Helium and +11% for Neon). Therefore, the decay products will be quickly lost on the walls of the decay ring after entering a dipole. Absorbers have been inserted in the decay ring in order to collect most decay products. Their optimization implies to calculate the trajectories of the decay products in the dipoles for very large momentum differences with a good accuracy. For pure dipoles without fringe field as in the decay ring, an analytic treatment can be used to simulate the transportation. It is then possible to obtain the equivalent dipole which gives the beam sizes of the daughter particles. In a first part, we will describe the analytic treatment of the central trajectory and the motion of the ions around. In a second part, we will compare this treatment with the one with matrices for different orders in the case of the beta-beam decay ring.  
 
THPC057 Field Interference of Magnets in the Large Acceptance Storage Ring CR of the Fair Project dipole, multipole, simulation, dynamic-aperture 3113
 
  • O. E. Gorda, C. Dimopoulou, A. Dolinskii, F. Nolden, M. Steck
    GSI, Darmstadt
  The large acceptance storage ring CR is planned to be used for accumulation and cooling of rare isotope and antiproton beams at the future FAIR accelerator facility. The huge apertures as well as the close arrangement of the dipoles and quadrupoles make overlapping between the end fields of the magnets unavoidable. In addition, corrector magnets are planned to be installed in the drift sections between the dipoles and quadrupoles for closed orbit corrections. The presence of additional iron can have a significant influence on the magnetic field distribution. This interference can lead to a reduction of the integral field quality decline that is undesirable since it can affect the beam dynamics. In this contribution we present the results of 3D magnetic field simulations performed using the OPERA computer code. The field maps were derived and further analyzed. The corresponding sets of multipole components were calculated and were then implemented into one of the codes for the beam dynamics calculations. The MAD code was used to calculate the dynamic aperture and to estimate the effect of the field interference on the beam dynamics of the ring.  
 
THPC063 First Frequency Maps for Probing the Non-linear Dynamics of SOLEIL lattice, multipole, injection, insertion 3128
 
  • L. S. Nadolski, P. Brunelle, J.-P. Lavieville, P. Lebasque, A. Nadji, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 2.75 GeV third generation synchrotron light source delivering photons to beam-lines since January 2007. With a 3.7 nm.rad horizontal emittance, its optics is based on a strong focusing lattice. Large on- and off-momentum apertures are required in order to provide good injection efficiency and as large as possible beam lifetime. It is then fundamental to be able to understand the limitations of these key figures. In order to probe the transverse non linear dynamics two pinger magnets have been installed into the injection straight section during last summer shutdown period. In this paper, their calibration will be described. Then first comparisons between modeled and real machine will be given for betatron tune shifts with amplitudes, and frequency maps. To end the non linear impact of insertion devices on beam dynamics will be discussed.  
 
THPC064 Use of LOCO at Synchrotron SOLEIL lattice, storage-ring, coupling, optics 3131
 
  • L. S. Nadolski
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 354 m long 2.75 GeV third generation synchrotron light source delivering photons to beam-lines since January 2007. This paper will discuss in details the first attempts using LOCO code and problems encountered due to the storage ring lattice compactness. The introduction into the code of constraints on the quadrupole gradient variations gave tremendous improvements. The convergence is satisfactory, beta –beatings are reduced from 5% to below 1% RMS in both planes. Restoring the symmetry of the lattice enhanced the performances of the storage ring. In the last part, different ways of using LOCO as a powerful diagnostics tool will be given.  
 
THPC068 Effect of Magnetic Multipoles on the ALBA Dynamic sextupole, multipole, dynamic-aperture, dipole 3143
 
  • P. A. Piminov, E. B. Levichev
    BINP SB RAS, Novosibirsk
  • D. Einfeld
    ALBA, Bellaterra
  For modern synchrotron light sources the main limitation of dynamic aperture is due to the strong chromatic sextupoles. However, small multipole errors in magnetic elements can reduce the original dynamic aperture by generating high order resonances at the aperture boundary. For the ALBA synchrotron light source a dynamic aperture in the presence of magnetic multipoles in the main magnets was simulated by tracking code. Both systematic and random magnetic errors were taken into account. In this paper we report on the results of our considerations.  
 
THPC077 Transportation Channel with Uniform Electron Distribution for the Kharkov Neutron Source based on Subcritical Assembly Driven with Linear Accelerator target, octupole, electron, focusing 3164
 
  • A. Y. Zelinsky, I. M. Karnaukhov
    NSC/KIPT, Kharkov
  Electron beam transportation channel from linear accelerator to the neutron target of NSC KIPT neutron source should provide uniform distribution of electrons on target surface to prevent overheating of the target and reduce thermal stress. In the presented channel the method of uniform beam distribution formation with linear focusing elements and nonlinear focusing elements (octupole magnets) we used. Linear focusing elements were used to provide particle transportation through the channel without losses and to form required beam sizes at the target. Nonlinear focusing elements were used to modulate transverse velocity of peripheral particles. As a result the uniform electron beam of rectangular shape can be formed at the target. In the report the main principles of transportation channel design and results of calculations for NSC KIPT neutron source based on subcritical assembly driven by electron accelerator are presented. Lattice and parameters of focusing elements are presented. Calculation results show that proposed transportation channel lattice can provide uniform beam of rectangular shape with sizes 66x66 mm.  
 
THPC078 Injection Scheme of X-rays Source NESTOR injection, electron, storage-ring, simulation 3167
 
  • A. Y. Zelinsky, I. M. Karnaukhov, A. Mytsykov, V. L. Skirda
    NSC/KIPT, Kharkov
  In the paper the injection scheme of the X-ray source NESTOR based on the compact storage ring and Compton scattering is described. It is supposed to inject electron beam through fringe fields of a bending magnet. For final beam deflection electrical inflector on the running wave will be used. The layout of the injection scheme and elements characteristics are presented. The results of simulations of electron beam motion through 3-d fields of electro-magnetic devices of the injection channel are presented.  
 
THPC110 Investigation of Helical Cooling Channel emittance, simulation, coupling, superconductivity 3233
 
  • K. Yonehara, V. Balbekov
    Fermilab, Batavia, Illinois
  A helical cooling channel (HCC) has been proposed to quickly reduce phase space of muon beams*. It is composed of solenoidal and helical coils to provide focusing and dispersion needed for the six-dimension cooling. A comprehensive investigation of the HCC is performed in presented work including theoretical analysis, particle tracking and Monte Carlo simulation. These results are also compared with the past simulation results** to confirm the helical cooling theory. Optimization of the channel and estimation of its ultimate performances are presented.

*Y. Derbenev and R. P. Johnson. PRSTAB 8, 041002 (2005).
**K. Yonehara et al. TPPP052, Particle Accelerator Conference 2005.

 
 
THPC113 Feedback Damper System for Quadrupole Oscillations after Transition at RHIC feedback, damping, emittance, heavy-ion 3242
 
  • N. P. Abreu, M. Blaskiewicz, J. M. Brennan, C. Schultheiss
    BNL, Upton, Long Island, New York
  The heavy ion beam at RHIC undergoes a strong quadrupole oscillations just after it crosses transition, which in turn leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed.  
 
THPC129 Coupling Correction in NSLS X-ray Ring coupling, electron, storage-ring, insertion 3290
 
  • M. G. Fedurin, I. Pinayev
    BNL, Upton, Long Island, New York
  In this paper we describe MATLAB script for reduction of the transverse coupling in the NSLS X-ray storage ring. The algorithm is based on varying strength of the skew quadrupoles and observation of the vertical beam size. The details of the iterative procedure are also discussed.  
 
THPC131 On the Optimal Number of Eigenvectors for Orbit Correction feedback, storage-ring, simulation, closed-orbit 3295
 
  • I. Pinayev, M. G. Fedurin
    BNL, Upton, New York
  The singular value decomposition method is widely used for orbit correction in the storage rings. It is a powerful tool for inverting of the usually rectangular response matrices, which usually have rectangular form. Another advantage is flexibility to choose number of eigenvectors for calculation of required strengths of orbit correctors. In particular, by reduction in number of eigenvectors one can average over ensemble noise in the beam position monitors. A theoretical approach as well as experimental results on the NSLS VUV ring are presented.  
 
THPC135 Vertical Emittance Measurements and Optimisation at the Australian Synchrotron emittance, coupling, lattice, storage-ring 3303
 
  • M. J. Spencer, R. T. Dowd, G. LeBlanc
    ASP, Clayton, Victoria
  Adjustment to the vertical emittance of the Australian Synchrotron storage ring was made using 28 skew quadrupoles. The skew quadrupole settings were calculated using the LOCO method which uses measurements of vertical dispersion as well as transverse coupling. The vertical emittance was monitored indirectly through lifetime, tune crossing, x-ray pinhole camera and calibrated model calculations. The paper outlines the results of these studies.  
 
THPC151 The Post-Mortem Analysis Software Used for the Electrical Circuit Commissioning of the LHC extraction, controls, superconducting-magnet, instrumentation 3345
 
  • H. Reymond, O. O. Andreassen, C. Charrondiere, D. Kudryavtsev, P. R. Malacarne, E. Michel, A. Raimondo, A. Rijllart, R. Schmidt, N. Trofimov
    CERN, Geneva
  The hardware commissioning of the LHC has started in the first quarter of 2007, with the sector 7-8. A suite of software tools has been developed to help the experts with the access, visualization and analysis of the result of the tests. Using the experience obtained during this phase and the needs to improve the parallelism and the automation of the electrical circuits commissioning, a new user interface has been defined to have an overview of all pending tests and centralise the access to the different analysis tools. This new structure has been intensely used on sector 4-5 and during this time the test procedures for different types of electrical circuits have been verified, which has also allowed the implementation of new rules and features in the associated software. The hardware commissioning of the electrical circuits enters in a more critical phase in 2008, were the number of the tests executed increases rapidly as test will be performed in parallel on different sectors. This paper presents an overview on the post mortem analysis software, from its beginning as a simple graphical interface to the actual suite of integrated analysis tools.  
 
THPP005 Orbit Distortion and its Correction in a Non-scaling FFAG acceleration, closed-orbit, injection, lattice 3383
 
  • D. J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  The wide variation in betatron tune over a rapid acceleration time presents particular difficulties in orbit correction in a non-scaling FFAG. Due to the fact that the phase advance between an error source and the corrector magnets varies during acceleration, and assuming that the corrector magnets' strengths must be constant during the short acceleration period, it is clear that conventional harmonic correction is ineffective. We propose a method to determine the magnet and BPM misalignments in a non-scaling FFAG. By running the beam at fixed energy over many turns, and assuming no other error sources exist, the BPM measurements allow the misalignments to be calculated (assuming that there are as many BPMs as error sources). We show that it is also possible to calculate the BPM misalignment error if the beam is run at two fixed energies. This is due to a characteristic property of non-scaling FFAGs - the variation of the phase shift, and hence the response of the BPM measurements to magnet misalignments, with momentum. Having estimated the magnet misalignments, a local correction is made and a tracking study carried out to calculate the reduction in orbit distortion that results.  
 
THPP006 Injection and Extraction for the EMMA NS-FFAG extraction, injection, dipole, diagnostics 3386
 
  • B. D. Muratori, S. L. Smith, S. I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • C. Johnstone
    Fermilab, Batavia, Illinois
  EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper will summarize the design of the extraction and injection transfer lines of the NS-FFAG. In order to operate EMMA, the Energy Recovery Linac Prototype (ERLP) shall be used as injector and the energy will range from 10 to 20 MeV. Because this would be the first non-scaling FFAG, it is important that as many of the bunch properties are studied as feasible, both at injection and at extraction. To do this, a complex injection line was designed consisting of a dogleg to extract the beam from ERLP, a matching section, a tomography section and some additional dipoles and quadrupoles to transport the beam to the entrance of EMMA. Further, an equivalent tomography module was placed in the extraction line together with several other diagnostic devices including the possibility of using a transverse deflecting cavity.  
 
THPP024 Detailed Study of the RF Properties of the FETS RFQ Cold Model rfq, simulation, coupling, ion-source 3422
 
  • S. Jolly, A. Kurup, D. A. Lee, J. K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • Y. Cheng
    IHEP Beijing, Beijing
  • A. P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon
  A 324MHz four vane RFQ cold model has been built, as part of the development of a proton driver Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) in the UK. Previous measurements to determine the electric field profile were made using the bead-pull perturbation method: these measurements have been refined and expanded. New measurements of the electric field profile, Q-value and resonant modes are presented. Measurements of the fundamental frequency and Q-value of the RFQ as a result of modifications to the profile of the end flange inserts are also given. Finally, an experiment is outlined to determine the beam transmission properties of the cold model based on beam transport simulations with the General Particle Tracer package (GPT).  
 
THPP026 IH Accelerating Structures with PMQ Focusing for Low-energy Light Ions focusing, simulation, impedance, ion 3428
 
  • S. S. Kurennoy, S. Konecni, J. F. O'Hara, L. Rybarcyk
    LANL, Los Alamos, New Mexico
  We are developing high-efficiency room-temperature RF accelerating structures for beam velocities in the range of a few percent of the speed of light by merging two well-known ideas: inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we have proved that such structures provide a very efficient and practical accelerator for light-ion beams of considerable currents. The IH accelerating structures with PMQ focusing following a short RFQ can be used in the front end of ion linacs or in stand-alone applications such as a compact deuteron-beam accelerator up to the energy of a few MeV.  
 
THPP089 Gamma Transition Jump for PS2 betatron, optics, collective-effects, lattice 3572
 
  • W. Bartmann, M. Benedikt, E. Métral, D. Möhl
    CERN, Geneva
  • S. Peggs
    BNL, Upton, Long Island, New York
  The PS2, which is proposed as a replacement for the existing ~50-year old PS accelerator, is presently considered to be a normal conducting synchrotron with an injection kinetic energy of 4 GeV and a maximum energy of 50 GeV. One of the possible lattices (FODO option) foresees crossing of transition energy near 10 GeV. Since many intensity dependent effects can take place in both the longitudinal and the transverse planes a fast jump of gamma transition is necessary in order to pass the non-adiabatic region rapidly. The aim of the present paper is on the one hand to scale the gamma transition jump, used since 1973 in the PS, to the projected PS2 and on the other hand based on these results the analysis of the implementation and feasibility of a gamma transition jump scheme in a conventional FODO lattice.  
 
THPP102 Radiation Damage Studies for the Slow Extraction from SIS100 extraction, septum, ion, beam-losses 3602
 
  • A. Smolyakov
    ITEP, Moscow
  • E. Mustafin, N. Pyka, P. J. Spiller
    GSI, Darmstadt
  During the slow extraction from SIS100 synchrotron 5% of the beam will hit the wires of the electrostatic septum and will be lost. These losses produce very high radiation damage to the superconducting quadrupole doublet situated downstream of the extraction point. These beam losses were simulated with the help of Fluka code for U28+ and Ne5+ beams. Non-zero cross-section and non-zero angular divergence were assumed for the lost beam, allowing distributed modeling of the slow extraction losses. The radiation damage to different layers of the superconducting quadrupole cables was calculated. The lifetime of the s.c. cables of the quadrupoles was found to be too short. Thus, alternative quadrupole designs with higher radiation tolerances were investigated: with stainless steel shielding of the s.c. cables and with a gap in the mid-plane between the s.c. cables.  
 
THPP103 Design of the Beam Extraction System of the New Heavy Ion Synchrotrons SIS100 and SIS300 at FAIR extraction, septum, kicker, sextupole 3605
 
  • N. Pyka, U. B. Blell, P. J. Spiller, J. Stadlmann
    GSI, Darmstadt
  The proton and heavy ion synchrotrons SIS100 and SIS300 are the heart of the new FAIR facility which is under construction on the site of the present GSI. All ions from protons to uranium will be accelerated up to a magnetic rigidity of 100 Tm and 300 Tm, respectively. The design of the beam extraction system of both synchrotrons is completed and will be presented in this paper. The extraction devices of both synchrotrons are situated in one common straight section and deflect the beam vertically. SIS100 has been optimized for fast extraction by means of a distributed fast bipolar kicker system. However, slow extraction over a few seconds is also foreseen. SIS300 has been optimized for slow extraction and may generate spills of up to 100s. The slow extraction channel combines horizontal deflection by an electrostatic septum in the first stage with vertical deflection by a Lambertson septum magnet and subsequent magnetic extraction septa in the second stage. An emergency beam dumping system could be integrated in the extraction system of both machines.  
 
THPP132 Review of the Initial Phases of the LHC Power Converter Commissioning controls, superconducting-magnet, instrumentation, cryogenics 3670
 
  • H. Thiesen, D. Nisbet
    CERN, Geneva
  The LHC requires more than 1700 power converter systems that supply between 60A and 12kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by this paper. The planning and execution that have led to the successful completion of these initial phases are described. Results and conclusions of the testing are presented.  
 
THPP133 Magnet Power Converters for the New Elettra Full Energy Injector dipole, booster, controls, storage-ring 3673
 
  • R. Visintini, G. Cautero, M. Cautero, D. M. Molaro, M. Svandrlik, M. Zaccaria
    ELETTRA, Basovizza, Trieste
  A large number of power converters has been required to supply the coils and the magnets of the four sub-structures of the new Elettra full energy injector. The Linac, and the two transfer lines require highly stabilized DC power converters while the Booster has to be operated at 3 Hz supplying the magnets with sinusoidal current waveforms. The extraction Bumpers require slow pulse supplies. In order to keep all output voltages below 1 kV, a special connection has been adopted for the Booster dipoles. A particular type of low power four-quadrant converters with embedded Ethernet connection has been designed at Elettra for this specific project. The article will present the relevant facts about the different power converters and their performances.  
 
THPP142 Vacuum Conditioning of the SOLEIL Storage Ring with Extensive Use of NEG Coating vacuum, storage-ring, photon, synchrotron 3696
 
  • C. Herbeaux, N. Béchu, J.-M. Filhol
    SOLEIL, Gif-sur-Yvette
  The vacuum system of the SOLEIL storage ring is designed using a combination of standard pumps like Sputter Ion Pumps and Titanium Sublimation Pumps (TSP) and Non Evaporable Getter (NEG) coating. Following the ESRF results on low gap insertion device (ID) chambers, it was decided to use, in addition to the traditional pumps, NEG coating deposited by magnetron sputtering on extruded aluminium vessels. This has been applied in an extensive way to all the straight vessels of the storage ring that means quadrupole vessels and ID vessels, which represent about 56% of the circumference. The starting configuration of the SOLEIL vacuum system included all the NEG coated low gap ID chambers among which a 10.5 m long chamber. Conditioning of the vacuum system over an integrated beam dose of 500 A.h will be presented. The periodical re-activations of the TSP performed early 2007 improved significantly the conditioning rate. A comparison of the vacuum behaviour of two similar cells one with NEG coating and traditional pumping versus one with only NEG coating demonstrates the ability of the NEG coating to keep alone the pressure at low level.