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Abstract 
In the presence of a linear coupling due to skew 
quadrupoles the sum of the single particle horizontal and 
vertical emittances has carefully been obtained. It is 
shown that only under certain condition the sum is an 
invariant quantity. 

INTRODUCTION 
Linear coupling of horizontal and vertical oscillations is 
of prime importance for the operation and performance of 
a synchrotron [1-3]. In the presence of a linear coupling 
the invariance of emittances in horizontal and vertical 
planes no longer holds and it is a common consensus that 
the sum of emittances is an invariant quantity. Here we 
have tried to show the extent under which the sum is an 
invariant quantity. 
We first bring the definition of the transverse single 
particle emittances using the Floquet transformation in 
alternating gradient as well as constant focusing rings, 
then in the presence of the linear coupling, due to skew 
quadrupoles we introduce the coupled differential 
equations governing the particles motion to find an 
equation for the sum of the emittances. 

BASIC EQUATIONS 
We first recall the usual definition of the single particle 

emittance  
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with a similar relation for the yε . For the general case of 
periodic focusing, the general trajectory equation of 
motion is 
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The solution to the trajectory equation would be 
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From  Eqs. (2) and (3) we can also show that 
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We may define the following Floquet transform from 
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We also keep in mind that 
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Now, the Courant-Snyder invariant Eq. (1), which 
corresponds to an ellipse in ( xx ′, ) phase space, with a 
shape and orientation which is a function of s can be cast 
into a new form as 
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Therefore, we can readily write 
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and similarly for yε . Also from a different point of view 
we may write from Eq. (7) 
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and for the second derivative we can write 
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Substituting the above relation in Eq. (2) we are left with 
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Now, from Eq. (4) we note that the expression in the 
parenthesis is equal to −1 and therefore, we can write 
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If we now multiply both sides by
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,   we will have 
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For the case of smooth approximation and constant 
focusing, const.=xβ  therefore, 

0=α  and 
x

x γ
β 1= . With the following change of 

variable 2/1−= xxβη , ( )2/1−= yyβζ   we write 
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above relations in Eq. (1) 
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LINEARING COUPLING 
In order to study the effect of field errors we should 
introduce a realistic field and add an additional term on 
the write hand side of Eqs .(2) and (12) 
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In the presence of linear coupling, we define the average 
normalized skew gradient as  
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the normalized magnetic fields. From Eq. (23) the 
equations of betatron motion of a test particle i in the 
presence of linear coupling due to skew quadrupoles are 
given by [3] 
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Now, using the definition of skew gradient and also Eq. 
(5) we can write 
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and a similar relation for y direction 
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Here, the normalized (Courant-Snyder) coordinates and 
angle are used 
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where ix and iy are the horizontal and vertical deviations 
from the central orbit, s  is the azimuthal coordinate and 

yx,β  the betatron functions. Considering that the tunes 
and the skew gradient are the same for all the particles, 
i.e. yxix QQQ == iy,, Q ,  and 0KKi = , and using the 
smooth 
approximation xxix QR /, ≈= ββ and

yyiy QR /, ≈= ββ   the equation of motion can be re-
written as [3] 
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Multiplying Eqs. (30) and (31), on both sides by 
φ
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This can be re-written as 
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and using the definition of emittances, we can write 

( ) .112 330
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=+

φ
ζη

φ
ηζεε

φ d
d

QQd
d

QQ
KR

d
d

xyyx
yx  (38) 

 

For weak skew coefficient the right hand side can be 
neglected and therefore the sum of emittances remains 
constant. For the special case yx QQ =  we can write 
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Therefore 
 

const.
2

2
0

2

+=+ ηζεε
x

yx Q
KR

   (40) 

This relation clearly shows the effect of couplingη ,ζ  on 
the sum of emittances. In the case of weak skew 
quadruple coefficient, the first term on the right hand side 
is negligible and we can approximately reach a sum 
invariance  

const.=+ yx εε     (41) 
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