

* Work partially supported by DOE grant DE-FG02-99ER41104; Thanks to Bob Warnock.

11th European Particle Accelerator Conference

Self Consistent Vlasov-Maxwell Treatment II

Wave equation in lab frame with "2D" planar source:

$$(\partial_Z^2 + \partial_X^2 + \partial_Y^2 - \partial_u^2)\mathcal{E} = H(Y)\mathcal{S}(\mathbf{R}, u), \quad \mathcal{E}(\mathbf{R}, Y = \pm g, u) = 0.$$

where
$$u = ct$$
, $\mathcal{E}(\mathbf{R}, Y, u) = (E_Z, E_X, B)$, $\mathbf{R} = (Z, X)$.

Vlasov equation in beam frame:

$$f_s - \kappa(s)xf_z + F_z f_{p_z} + p_x f_x + [\kappa(s)p_z + F_x]f_{p_x} = 0$$

where

$$F_{z} = \frac{e}{\bar{v}\bar{E}}\mathbf{V}\cdot\mathbf{E},$$

$$F_{x} = \frac{e}{\bar{E}\bar{\beta}^{2}}[-\bar{X}'(s)E_{Z}+\bar{Z}'(s)E_{X}+\bar{v}B)],$$

and $\mathbf{V} = \bar{v}(\mathbf{t}(s) + p_x \mathbf{n}(s))$, $\mathbf{E} = (E_Z, E_X)$ and Bare evaluated at $\mathbf{R} = \bar{\mathbf{R}}(s) + x\mathbf{n}(s)$ and $u = (s - z)/\bar{\beta}$.

Field Calculation (Lab Frame)

$$\mathcal{E}(\mathbf{R}, u) := \langle \mathcal{E}(\mathbf{R}, \cdot, u) \rangle = \int_{-g}^{g} H(Y) \mathcal{E}(\mathbf{R}, Y, u) dY.$$

averaged field computed much more quickly

$$\mathcal{E}(\mathbf{R}, u) = -\frac{1}{2\pi} \sum_{k=0}^{\infty} (-1)^k (1 - \frac{\delta_{k0}}{2}) \int_{-\infty}^{u-kh} dv \int_{-\pi}^{\pi} d\theta \, \mathcal{S}(\hat{\mathbf{R}}, v, k)$$

where
$$\hat{\mathbf{R}} = \mathbf{R} + \sqrt{(u-v)^2 - (kh)^2}(\cos\theta, \sin\theta).$$

Issues

- localization in θ (angular size of the beam) for $v \ll u kh$ and in v
- delicate calculation (must be done cum grano salis)

 θ integration: superconvergent trapezoidal rule v integration: adaptive Gauss-Kronrod rule

Beam to Lab Charge/Current Density Transformation

- To solve Maxwell equations in lab frame must express lab frame charge/current density in terms of beam frame phase space density
- To a good approximation lab frame charge/current densities are

$$\rho_L(\mathbf{R}, Y, u) = H(Y)\rho(\mathbf{r}, \beta u) ,$$

$$\mathbf{J}_L(\mathbf{R}, Y, u) = \beta c H(Y)[\rho(\mathbf{r}, \beta u)\mathbf{t}(\beta u + z) + \tau(\mathbf{r}, \beta u)\mathbf{n}(\beta u + z)],$$

$$\rho(\mathbf{r},s) = Q \int dp_z dp_x f(\zeta,s), \quad \tau(\mathbf{r},s) = Q \int dp_z dp_x p_x f(\zeta,s),$$

where $\zeta = (z, p_z, x, p_x)$

Remark: subtlety in the change of independent variable $u=ct \rightarrow s$ Derivation to be published in a forthcoming paper

UNIVERSITY OF LIVERPOOL

Self Consistent Monte Carlo Method

Outline and comparison with PIC for Vlasov-Poisson (VP) system from s to $s + \Delta s$

From scattered beam frame points at s → smooth/global Lab frame charge/current density via a 2D Fourier method (Charge deposition (+ filtering) in VP PIC).
 1D Example:

1D orthogonal series estimator of f(x), $x \in [0, 1]$

$$f_J(x) := \sum_{j=0}^J \theta_j \phi_j(x), \quad \theta_j = \int_0^1 \phi_j(x) f(x) dx, \quad \phi_0(x) = 1, \phi_j(x) = \sqrt{2} \cos(\pi j x), \quad j = 1, 2, \dots$$

According to the fact that f(x) is a probability density

$$\theta_j = E\{I_{\{X \in [0,1]\}}\phi_j(X)\}, \quad \text{therefore a natural estimate is} \quad \hat{\theta}_j := \frac{1}{N} \sum_{n=1}^N I_{\{X_n \in [0,1]\}}\phi_j(X_n)$$

- Calculate fields at *s* from history of Lab Frame charge/current density using our field formula (Solve Poisson Equation in VP PIC)
- Use fields at s to move the phase space points to $s + \Delta s$ (Same in VP PIC)

Microbuching in FERMI@ELETTRA First Bunch Compressor

Microbunching can cause an instability which degrades beam quality

This is a major concern for free electron lasers where very bright electron beams are required

FERMI@ELETTRA first bunch compressor system proposed as a **benchmark** for testing codes at the September'07 workshop on microbunching instability in Trieste.

See https://www.elettra.trieste.it/FERMI/index.php?n=Main.MicrobProgram

Layout first bunch compressor system			
Parameter	Symbol	Value	Unit
Energy reference particle	E_r	233	MeV
Peak current	l l	120	A
Bunch charge	Q	1	nC
Norm. transverse emittance	$\gamma \epsilon_0$	1	μ m
Alpha function	α_0	0	
Beta function	β_0		m
Linear energy chirp	u	-27.5	I/m
Uncorrelated energy spread	σ_E		Kev
Nomentum compaction	R_{56}	U.UU25	m
Magnetic longth	ρ_0		m
Distance 1st 2nd 3rd 4th bond	L_b	0.5	m
Distance 1st-2nd, Stu-4th Denu Distance 2rd 2nd band	$\begin{bmatrix} L_1 \\ I_2 \end{bmatrix}$	2.5	

-

Mean power

x-emittance

11th European Particle Accelerator Conference

11th European Particle Accelerator Conference

 $\mathbf{E} \cdot \mathbf{t}$ in normalized coordinates at s=5m for $\lambda = 600 \mu m$.

 $\mathbf{E} \cdot \mathbf{t}$ in normalized coordinates at s=5m for $\lambda = 300 \mu m$.

Main Issues and Accomplishments

• FERMI@ELETTRA microbunching studies:

Creation of modulations in $\mathbf{E} \cdot \mathbf{t}$ for the $\lambda = 300 \mu \text{m}$ case but no detrimental effect on the charge density Simulations done at the HPC at UNM and on NERSC at LBNL, typical runs on NERSC: N procs = 200-700, N particles = 2×10^7 , few hours of CPU time

- Storage/computational cost very important
 - As much analytical work as possible
 - State of the art numerical techniques: integration, interpolation, density estimation, quasirandom generator (see Warnock et.al. TUPP109 Tuesday)
 - Parallel computing, parallel I/O
- Delicacy of field calculation, support of charge/phase space density

UNIVERSITY OF LIVERPOOL

11th European Particle Accelerator Conference

-

 $\mathbf{E} \cdot \mathbf{t}$ in normalized coordinates at s=4m for $\lambda = 200 \mu m$.

