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Abstract

We present an analytical evaluation of the field-
distortion effect from eddy currents induced by the time
variation of magnetic field of dipole magnets in the elliptic
or rectangular beam pipe of finite conductivity. The pipe
sizes and aspect are arbitrary except that for practical rea-
sons we assume the pipe wall thickness to be small as com-
pared to the skin depth. Handy formulas are presented for
the field multipoles arising from non-round shape of the
beam pipe.

ELLIPTIC CONDUCTING BEAM PIPE

Consider a cylindrical pipe of elliptic cross-section
whose (uniform) thickness d is negligible compared with
its major and minor semi-axes, a and b, as well as the
skin depth δ: d � a, b, δ. The pipe is put into a homo-
geneous AC magnetic field perpendicular to the pipe axis
directed along the coordinate z-axis, the field amplitude is
taken as unity, and its oscillation frequency is ω, so that
δ = c/

√
2πσω, where σ is the pipe wall conductivity. Find

the eddy-current distribution over the pipe circumference
and modification of the field due to eddy-currents.

Elliptic Coordinates

We use the elliptic cylindrical coordinates μ, θ with the
focal parameter 2f , which corresponds to the distance be-
tween the foci of the elliptic and hyperbolic coordinate
lines in the coordinate plane x0y. Their connection to the
Cartesian coordinates x, y reads:

cosh(μ + iθ) = (x + iy)/f , (1)

x = f coshμ cos θ , y = f sinh μ sin θ , (2)

μ ≥ 0, −π ≤ θ ≤ π, and the Lamé factors are

hμ = hθ = h = f

√
cosh2 μ− cos2 θ. (3)

The foci position is y = 0, x = ±f , and the parameter f
is found from the pipe sizes a , b: f =

√
a2 − b2.

The elliptic coordinates can be expressed via the Carte-
sian coordinates using the distances r1,2 to the foci,

r1,2 =
√

(x± f)2 + y2 = f(coshμ± cos θ),

whence

coshμ = (r1 + r2)/2f , cos θ = 2x/(r1 + r2). (4)

Vector Potential

We take the vector potential parallel to the z-axis: A =
(0, 0, A(μ, θ)). In free space Δ⊥A = 0,

1
h2

(
∂2

∂μ2
+

∂2

∂θ2

)
A = 0 .

The Laplacian operator is separable in the elliptic coordi-
nates, thus the suitable form of the vector potential in free
space compatible with the asymptotic homogeneous verti-
cal field (unity apmplitude) reads

A∼−x+
∑

q
(C1(q) cosh qμ+C2(q) sinh qμ)cos qθ, (5)

where q is the separation constant which should be inte-
ger for the field to be invariant under the transformation
θ → θ + 2π, while C1,2 are to be found from the boundary
conditions.

In the inner domain, inside the pipe, μ < μ0, where
tanhμ0 = b/a, the fields are regular at μ → 0, so C2 = 0.
In the outer domain, μ > μ0, we should have A < +∞
when μ →∞, therefore C2 = −C1 (q > 0). Thus,

A = −f coshμ cos θ

+f

∞∑

n=1

an(e−(2n−1)|μ−μ0| + e−(2n−1)(μ+μ0))
2(2n− 1)

× cos(2n− 1)θ . (6)

Mixed Boundary Condition

The series coefficients in Eq. (6) are written so as to
have a continuous vector potential at the boundary μ = μ 0,
and thus the field Hμ = 1

h
∂A
∂θ normal to the pipe wall, will

be continuous. Discontinuity in the tangential component
Hθ = − 1

h
∂A
∂μ is related to the eddy-current surface density

i,

Hθ|μ=μ0+0 − Hθ|μ=μ0−0 =
4π

c
i . (7)

For a very thin wall we can write

i ≈ d j = dσEz = −1
c
dσȦ =

iω

c
dσA . (8)

Using Eqs. (7,8) we arrive at the boundary condition for
the vector potential which has the mixed form: it relates
the normal derivative of A, Eq. (6), with its value on the
boundary μ = μ0 = arctanhb/a,

∂A

∂μ

∣∣∣∣
μ=μ0−0

− ∂A

∂μ

∣∣∣∣
μ=μ0+0

=
2id

δ2
hA|μ=μ0

(9)
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Coupling of Harmonics

Term-by-term equating of the Fourier series in θ will
be possible in Eq. (9) if we express the periodic factor
h/f =

√
cosh2 μ0 − cos2 θ via its Fourier harmonics h2j

available in terms of the hypergeometric function [1],

h2j = −(2− δj0)
(2j − 3)!!

23j j! coshj μ0

×2F1(j −
1
2
, j +

1
2
; 2j + 1; sech2μ0). (10)

The result can also be expressed in terms of the complete
elliptic integrals K ≡ K(sech2μ0) and E ≡ E(sech2μ0),
sech2μ0 = 1− b2/a2,

h0 =
2
π

coshμ0E ,

h2 =
4
3π

coshμ0 ((cosh 2μ0 − 1)K− cosh 2μ0E) ,

h4 =
4

15π
coshμ0(4 cosh 2μ0(cosh 2μ0 − 1)K

−(2 cosh4μ0 − 1)E), etc.

Multiplying two series on the RHS of Eq. (9) we obtain
a linear combination of different Fourier coefficients an at
each cos(2n− 1)θ term. For convenience of computation,
Eq. (9) can be rewritten in the form of an infinite set of
linear equations with respect to an, n, n′ = 1, 2, 3 . . .:

an =
idf

δ2
Hnn′(− coshμ0 δn′1 + Dn′n′′an′′), (11)

where we introduced two infinite matrices H and D; the
form of the diagonal matrix D follows from Eq. (9),

D = diag
{

1 + e−2(2n−1)μ0

2(2n− 1)

}
, n = 1, 2, 3 . . . (12)

and the symmetric harmonic-coupling matrix H can be
found by decomposition of the cosine products in Eq. (9)
into cosine sums,

H=

⎛
⎜⎜⎝

2h0 + h2 h2 + h4 h4 + h6 . . .
h2 + h4 2h0 + h6 h2 + h8 . . .
h4 + h6 h2 + h8 2h0 + h10 . . .

. . . . . . . . . . . .

⎞
⎟⎟⎠ (13)

With these definitions, the linear equation set, Eq. (11),
takes the form

(
I− idf

δ2
H ·D

)
· a = − idf

δ2
coshμ0 H · 1, (14)

where we introduced the identity matrix I and vectors a,1:

a = (a1, a2, a3, . . .) , (15)

1 = (1, 0, 0, . . .) .

Now the inverse matrix,

R =
(
I− idf

δ2
H ·D

)−1

, (16)

yields the solution to Eq. (14),

a = − idf

δ2
coshμ0 R ·H · 1. (17)

Truncating the matrices and vectors to a finite dimension,
we can find the series coefficients in Eq. (6) with any
needed accuracy. For a weak shielding effect, we neglect
the self-consistent part in the fields and obtain from Eqs.
(16,17)

R ≈ I , a ≈ −2ida

δ2
H · 1, for

df

δ2
� 1 .

Multipole Expansion of the Field

In the central part of the chamber aperture we can expand
the found fields into a power series in terms of x + iy =
reiα, where r, α are the polar coordinates,

A =
∞∑

l=1

c2l−1

(2l− 1)!
r2l−1 cos(2l− 1)α , (18)

where we retained only terms with the dipole symmetry.
We observe that the coordinate dependence for μ < μ0

in Eq. (6) can be recast into a sum of powers of re iα,

cosh(2n− 1)μ cos(2n− 1)θ = Re[T2n−1(
r

f
eiα)] (19)

where T2n−1 is the Chebyshev polynomial. Using explicit
formula for its coefficients [2], substituting Eq. (19) into
Eq. (18), and rearranging summation, we find the multipole
coefficients c2l−1, l = 1, 2, 3 . . . in Eq. (18),

c2l−1 = −δl1 + (−1)l

(
2
f

)2(l−1)

(20)

×
∞∑

n=l

(−1)n (n + l − 2)!
(n− l)!

ane−(2n−1)μ0 ,

where δl1 is the Kronecker symbol, and coefficients an are
given by Eq. (17).

RECTANGULAR CONDUCTING VACUUM
CHAMBER

Consider a window-frame dipole magnet where the in-
finitely-thin current sheets on the sides generate a quasi-
static AC magnetic field. In our simplified two-dimensional
model, a rectangular window with the size 2a × 2b is sur-
rounded with a perfect non-conducting magnetic medium
(μ →∞). Without a vacuum chamber, the uniform current
density would have produced a uniform field. Our goal is
to find the distribution of eddy-currents over the rectangu-
lar conducting vacuum chamber with thin walls lining the
window from inside, as well as to calculate distortion of the
uniform field caused by eddy-currents.

We consider the case where the plane conducting walls
are modelled by ”infinitely thin” eddy-current sheets with
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coordinates y = ±b, −a ≤ x ≤ a, and x = ±a,
−b ≤ y ≤ b, for the horizontal and vertical walls, re-
spectively. This assumption holds if the wall thickness d
is negligible as compared with the window sizes a, b, and
with the effective skin depth δ: d � a, b, δ.

Horizontal Conducting Plates

We characterize the magnetic field at r = (x, y, z) by
the vector potential A = (0, 0, A) and assume the har-
monic time-dependent factor e−iωt in all the field compo-
nents. In the rectangular domain of free space, |x| < a,
|y| < b, the field is Laplacian,

A = −x +
∞∑

n=0

an

kn
sin knx

coshkny

sinhknb
. (21)

The first term stands for the oscillating uniform vertical
driving field with unity amplitude, and the Fourier-series
with a dipole symmetry represents the contribution from
eddy-currents induced in the horizontal conducting plates.

The boundary condition for induced fields at x = ±a
reads 1 − Hy = 0 for any y, and differentiating Eq. (21)
over x we deduce: cos kna = 0; thus,

kn = π(2n + 1)/2a. (22)

The boundary condition at y = ±b, |x| ≤ a, implies van-
ishing tangential components of magnetic field at the sur-
face of perfect magnetic material, and involves the surface
density of eddy-currents, i,

Hx|y=b =
4π

c
i . (23)

Neglecting non-uniformity of current density j over the
conducting plate thickness d, we relate the surface density
i ≈ jd with the curl electric field Ez = − 1

c Ȧ, using Ohm’s
law, j = σEz , where σ is the wall conductivity, we trans-
form the RHS of Eq. (23):

Hx|y=b =
4π

c
i =

4π

c
d σEz =

4πi σω

c2
d A|y=b , (24)

and, finally, the mixed boundary condition reads

Hx|y=b =
2id

δ2
A|y=b , . (25)

Substituting Eqs. (21) into Eq. (25), we rewrite the bound-
ary condition Eq. (23) in terms of the Fourier series,

∞∑

n=0

ansinknx=
2id

δ2

(
−x+

∞∑

n=0

an

kn
sin knx coth knb

)
(26)

To find the unknown series coefficients an, we expand
the first term on the RHS of Eq. (26) into the Fourier series
on the interval −a < x < a,

x =
8a

π2

∞∑

n=0

(−1)n

(2n + 1)2
sin knx . (27)

Now, equating the series in Eq. (26) term-by-term, we ob-
tain:

an = −2id

δ2

8a (−1)n

π2(2n + 1)2
(28)

×
(

1− 2id

δ2

2 a

π(2n + 1)
coth

π(2n + 1)b
2 a

)−1

.

Thus, the found coefficients, Eq. (28), of the Fourier se-
ries, Eq. (21), together with the spatial harmonic wave-
numbers, Eq. (22), completely determine the magnetic
field inside the rectangular domain between the horizontal
conducting plates.

Multipole Expansion of the Field

As before, in the central part of the chamber aperture we
can expand the found fields into a power series in terms of
x + iy = reiα, where r, α are the polar coordinates,

A =
∞∑

l=0

c2l+1

(2l + 1)!
r2l+1 cos(2l + 1)α , (29)

where we retained only terms with dipole symmetry.
We observe that the coordinate dependence in Eq. (21)

can be recast into a power-series form,

sin knx coshkny=
∞∑

l=0

(−1)l(knr)2l+1

(2l+1)!
cos(2l+1)α. (30)

Substituting Eq. (30) into Eq. (21), and rearranging sum-
mation, we obtain expressions for the multipole coeffi-
cients in Eq. (29),

c2l+1 =−δl0+(−1)l
∞∑

n=0

ank2l
n

sinh knb
, l = 0, 1, 2, . . . (31)

where δl0 is the Kronecker symbol, and an, kn are given
by Eqs. (28,22).

DISCUSSION

The vertical walls of the rectangular beam pipe alone
leave the field uniform, and their uniform eddy-currents re-
duce the field amplitude, i.e., Hy = 1 is replaced by

Hy =
(
1− 2idva/δ2

v

)−1
. (32)

However, the combined effect of vertical and horizontal
conducting walls leads to non-uniform eddy-current den-
sity in the side walls, its analysis is performed in line with
the approaches shown in the above sections. The involved
form of the result falls beyond the scope of this paper.

Generalization of the obtained results to the case of
quadrupole magnet is straightforward.
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