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Abstract

A total of three permanent magnet chicane magnets have
been installed at the Advanced Light Source (ALS) at the
Lawrence Berkeley National Laboratory. The magnet de-
sign incorporates an annular array of counter-rotating per-
manent magnet pairs (PMs) with supplemental fast trim
coils (EMs). The purpose is to provide a fixed angular sep-
aration between two successive elliptically polarizing un-
dulator (EPU) photon fans (with the PMs) and to correct
steering perturbation resulting from EPU polarization state
and gap changes (with the hysteresis-free EMs). This paper
presents a method for fine tuning relative orientation set-
tings of the rotors in the presence of initial uncertainty of
the exact PM rotor geometrical and magnetization param-
eters by performing magnetic measurements with rotating
coils. The measurement method will be developed and il-
lustrated with experimental data from the measurement of
a 16 cylinder permanent magnet harmonic corrector ring.

INTRODUCTION

The Advanced Light Source (ALS) at Lawrence Berke-
ley National Laboratory uses the concept of Permanent
Magnet Harmonic Corrector Ring (PMHCR) [1] within
chicane magnets used to bend the electron beam to operate
two insertion devices on a single straight section [2]. The
PMHCR plus the EM trim coils provide adequate magnetic
field harmonic correction in less than a second as needed
by the insertion device operation mode, and avoid hystere-
sis phenomena inherent in conventional iron-core electro-
magnets.
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Figure 1: Permanent Magnet Harmonics Corrector Ring

A PMHCR is made of M permanent magnet cylinders
as showed by figure 1:
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• spaced uniformly in the azimuthal direction at nomi-
nal angles βm = m 2π

M + β0,

• with nominal magnetization direction φm,

• with nominal strength Brm,

• with nominal radius rcm

• located at nominal radius Rm,

• and of nominal length Lm

where m refers to the cylinder index (m = 1..M ), β0

is the offset angle that rotates all the cylinders to give the
right orientation to the PMHCR harmonic correction.

The complex conjugate integrated magnetic field (I ∗(ζ))
provided by a PMHCR is known [1] as:

I∗(ζ) =
∫ ∞
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where ζ = x + iy and where B∗(ζ) = Bx − iBy is
the conjugate of the 2-D complex magnetic field density. In
Eq. 1, Z is the longitudinal cartesian coordinate.

As demonstrated by the Eq. 2, I ∗(ζ) can be expanded as
a power series of ζ/rp where rp is the reference radius, n
the harmonic order (n = 1: dipole, n = 2: quadrupole...)
and Cn the complex harmonic coefficients.

The quality of the correction provided by the PMHCR
depends on how accurately their magnetic characteristics
are known. We presents here how these characteristics
could be determined by means of rotating coil magnetic
measurements while the PMHCR is already assembled.

CHARACTERIZATION METHOD

This section is focused on the determination of the pa-
rameters of one cylinder with index m. One PMHCR cylin-
der with index m is completely determined by 6 parameters
(see Eq. 2): Lm, rcm, Rm, Brm, φm and βm.
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General Method

The only degree of freedom used in our characteriza-
tion method is φm which is used to isolate the effect of
the cylinder m from the others in Eq. 2.

Two measurements are taken for 2 different values of φm

(φ0
m and φ1

m) and lead to two sets of complex harmonic
coefficients (respectively C0

n and C1
n) . φ0

m and φ1
m are not

known but we accurately measure their difference δφm:

δφm = φ1
m − φ0

m (3)

Then, by calculating the difference between the 2 sets
of harmonic (ΔCn) we obtain a formula in which remains
only the influence of the cylinder m.

ΔCn = C0
n − C1

n

= Lm
r2
cm

R2
m

(
rp

Rm

)n−1

n Brm sin

(
δφm

2

)
(4)

× ei(φm−(n+1)βm+ δφm
2 −π

2 )

Eq. 4 is the core relation of the proposed method, all the
formulae needed to determine the parameters are deduced
from it.

Parameters Determination

The harmonic difference modulus is a function of 4 of
the wanted parameters and its argument is a function of the
remaining parameters:

|ΔCn| = f(Lm, rcm, Rm, Brm) (5)

Arg[ΔCn] = g(φm, βm) (6)

From Eq. 5 and Eq. 6, 4 parameters can be deter-
mined with 2 values of n: the 2 angles, and only 2 cylinder
paremeters. This requires some assumptions about the 2
others that we will develop later.

Formulae for angles From Eq. 4, we can deduce the
two following relations:

βm = Arg

[
ΔCn

ΔCn+1

]
(7)

φm = Arg [ΔCn] + (n + 1)βm − δφm

2
+

π

2
(8)

Formulae for 2 cylinder parameters From Eq. 4, the
only parameter of the modulus that depends on powers of
n is Rm which can be isolated and calculated with:

Rm =
n + 1

n
rp

∣∣∣∣
ΔCn

ΔCn+1

∣∣∣∣ (9)

Then from the three remaining parameters to determine,
we can assume that both the cylinders length (Lm) and ra-
dius (rcm) can be mechanically measured with an accuracy
close to the micron range. This accuracy enables us to con-
sider these two mechanically measured parameters as data

in the next formula allowing us to more precisely determine
Brm.

Brm =
1

n Lm sin
(

δφm

2

) R2
m

r2
cm

(
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)n−1

|ΔCn| (10)

SENSITIVITY TO ERRORS

We develop here some calculations to determine the sen-
sitivity of the parameters we propose to use to characterize
to measurement errors. As the previous relations are de-
duced from the ΔCn, we propose to investigate the influ-
ence of the harmonic differences modulus (|ΔCn| = dn)
and argument (Arg[ΔCn] = θn) errors on the parameters.
The errors are defined respectively as εdn and εθn , respec-
tively for the modulus and the argument (see Eq. 11).

ΔCreal
n = (dn + εdn) ei θn+εθn (11)

If εβm is the error on βm defined by Eq. 7 then we get:

εβm = βReal
m − βm = 2 εθn (12)

Then, we can deduce the error (εφm) performed on the
cylinder orientation angle (φm):

εφm = φReal
m − φm = (2n + 3)εθn +

εδφm

2
(13)

εδφm
represents the error performed on the measurement of

the cylinder magnetization orientation φm.
The same calculation can be led for εRm :

εRm = RReal
m −Rm

= rp

(
n + 1

n
− Rm

rp

)
εdn

dn+1 + εdn

(14)

Two remarks can be formulated concerning the minimiza-
tion of εRm (See Eq. 14).

• The harmonic order (n) can be chosen to reduce the
difference in the parenthesis which depends on the ra-
tio between Rm and rp,

• getting dn+1 as big as possible will minimize the ef-
fect of the error on the harmonic difference modulus
(εdn).

We can also evaluate the error through dimensionless
variables which could be more convenient for the next cal-
culations. We then define kdn :

kdn =
εdn

dn
(15)

dReal
n = dn + εdn = dn(1 + kdn) (16)

In the most unfavorable case we take kdn =
Max[kdn , kdn+1]:

kRm =
εRm

Rm
(17)

=
1

Rm

(
n + 1

n
rp

dn(1 + kdn)
dn+1(1− kdn)

−Rm

)
≈ 2kdn

(18)
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We can finally deduce kBrm with the assumptions that
possible errors on the mechanical measurements of Lm and
rcm are too small to disturb the determination of Brm.

kBrm =
εBrm

Brm
≈ (1 + 4kdn)(1 + 2kdn)n−1 − 1 (19)

EXPERIMENTAL DATA

We have begun testing the method presented with a 16
cylinder PMHCR whose nominal parameters have been de-
signed as:

• Rm = 68 mm, rcm = 9.5 mm, Lm = 6.25 mm,

• βm = mπ
8 − π

16 , Brm = 1.04 T ± 2%

To tune the φm angles without the method we are propos-
ing, we have to rely on the magnetization orientation
marked on the cylinder (±1◦ accuracy). Moreover as these
cylinders are tuned manually with a 360◦ graduated disk, it
adds an additional error of±0.5◦. If it is performed without
the magnetic measurement method, the φm are then tuned
with only a ±1.5◦ accuracy (±26 10−3 rad).

According to Eq. 4, the maximum dipole and quadrupole
component variation we could expect to measure (δφm =
π) at a 25 mm reference radius (rp) are:

• Dipole: dc1 = |ΔC1| = 1.27 10−4 T.m,

• Quadrupole: dc2 = |ΔC2| = 0.94 10−4 T.m

Expected Measurement Sensitivity

This PMHCR has been measured with a 400 hundred-
turn rotating coil which largest radius is 25 mm. The re-
producibility of the measurement bench could be evalu-
ated to ±4 10−7 T.m for the harmonic modulus (|Cn|) and
2.10−3rad for their arguments. From these reproducibil-
ity measurements we can deduce how the harmonic differ-
ences are affected and we get: 3.10−6 T.m for εdn and
2 10−2 rad for εθn .

The φm angles are measured with a 4000 points per turn
encoder which leaves us with an uncertainty on δφm of
1.6 10−3 rad. We can then deduce how accurately the pa-
rameters can be determined with the Eq. 12, 13, 14 and
19. By working with the dipole and the quadrupole com-
ponents, we obtain:

• εβm = 4.10−3rad, εφm = 11.6 10−3 rad,

• εRm ≈ 0.5 mm, εBrm = Brm ∗ kBrm = 0.13 T

These errors are not small enough to obtain a sharp parame-
ter characterization but it should allow us to check the order
of magnitude of the measured parameters.

Parameters Measurements

We measured the parameters for 2 diametrically opposed
cylinders (m=2 and m=10) and we worked on the dipole
and quadrupole differences.

βm (rad) Rm (mm) Brm (T )
m=2 Design 0.59 68 1.04

Measured 0.568 69.7 1.01

m=10 Design -2.55 68 1.04
Measured -2.61 70.8 1.12

Table 1: Parameter comparison: design vs measurements

Concerning φm, we took 2 successive measurements
with 2 different δφm to validate Eq. 8 and obtained:
φMeas1

10 = 0.87 rad and φMeas2
10 = 4.26 rad. The dif-

ference between these measurements (3.39 rad) has to be
compared with the real rotation applied to the cylinder
(3.28 rad).

The results from table 1 and the previous experiment
shows that the measured values are of the right order of
magnitude. However these parameter measurements are
not accurate enough (especially for Rm) to provide a better
harmonic content than the one obtained with the imperfec-
tions [1].

CONCLUSION

We proposed here a method that would lower the
PMHCR correction error levels since this method is meant
to determine the uncertainties about the parameters of as-
sembled PMHCR. The measurements showed earlier could
be more accurate if obtained from an adapted rotating coil.
Indeed, the rotating coil we used had a 25 mm measure-
ment radius compared to the 55 mm bore radius of the
PMHCR we studied. However, even with a small radius
rotating coil, it was possible to lower by a factor of 2 the
accuracy on the magnetization orientation(φm) and have a
reasonable accuracy on the other parameters determination
(βm, Rm and Brm) to verify their related formulae.

The next step of this work is to characterize completely
the PMHCR with a rotating coil sensor dedicated to it.
Once these parameters will be known, the final step would
be to generate a proper correction scheme and apply it to
determine the magnetic field the PMHCR should provide.
Then a magnetic measurement will check how pure the cor-
rection provided by the corrected PMHCR is.
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