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Abstract

The code Spink[1], in use for many years to track po-
larized hadrons in a synchrotron, was overhauled with the
introduction of a new generalized Frenet-Serret system of
coordinates in all dimensions in space.

THE BMT EQUATION

For spin tracking in a synchrotron Spink expresses the
spin rotation in each machine element in matrix form

S = M S0. (1)

Start from the BMT equation (no electric field)
⎧
⎨
⎩

dS
dt

=
q

γm
S× F

F = (1 + Gγ)B⊥ + (1 + G)B‖
, (2)

using the magnetic field components transverse and longi-
tudinal with respect to the velocity v. Define a unit velocity
u = v/v, v = βc. and use vector identities to express the
magnetic field components in terms of the magnetic field B

B⊥ = (u×B)× u, B‖ = (u ·B)u. (3)

After some readjustment (B = B‖ + B⊥)

F = (1 + Gγ)B−G(γ − 1)(u ·B)u. (4)

Use a coordinate system (e) that revolves around the ac-
celerator. The axis ẑ, longitudinal, is tangent to the tra-
jectory, x̂ and ŷ are the displacements with respect to this
orbit, radial and vertical, respctively. Call s the longitu-
dinal coordinate along the orbit. In these coordinates the
derivative of a vector a is

da
ds

=
dax

ds
x̂+ax

dx̂

ds
+

day

ds
ŷ+ay

dŷ

ds
+

daz

ds
ẑ+az

dẑ

ds
. (5)

Since it is
q

γm
=

ve

Bρ
,

where B is the local field, ρ the local radius of curvature,
ve the velocity in the new coordinates. Write

1
ρx

=
sin θ

ρ
,

1
ρy

=
cos θ sin φ

ρ
,

and obtain

dx̂

ds
=

sin θ

ρ
ẑ,

dŷ

ds
= −cos θ sinφ

ρ
ẑ

dẑ
ds = − sin θ

ρ x̂ + cos θ sin φ
ρ ŷ

. (6)
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Figure 1: Particle trajectory contained in a plane (π) per-
pendicular to the axis B. θ is the angle of latitude between
B and the “horizontal” plane (x, z). (φ) is the angle of lon-
gitude with respect to the axis ẑ.

sin θ/ρ and cos θ sinφ/ρ are the local curvature of the par-
ticle orbit in two planes, respectively, see Fig.1.

The velocity in the new coordinates at z = 0 is obtained
using Eqs.(5) and (6), see also S.Y.Lee book[2]

dr
dt

=
[
x′x̂ + y′ŷ +

(
z′ +

x

ρ
sin θ − y

ρ
cos θ sinφ

)
ẑ

]
ds

dt
.

(7)
Primes denote derivative with respect to s. The longitudinal
component of the velocity is

z′ =
√

1− x′2 − y′2.

We will use the coordinate transformation Eq.(5) and
Eq.(7) to express Eq.(2) for spin precession in a thin ac-
celerator element in matrix form as in Eq.(1). Assume that
within the element the magnetic field and the orbit don’t
change, perhaps slicing each element and writing matrices
for each slice.

Rewrite Eq.(2) in the new variable s as

dS
ds

= S× f (8)

where

f =
h

Bρ
[(1 + Gγ)B−G(γ − 1)(u ·B)u] , (9)

with

h =
ve

v
=

√
x′2 + y′2 +

(
z′ +

x

ρ
sin θ − y

ρ
cos θ sin φ

)2
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Use Eq.(5) for the derivative of a vector

dS
ds

=
(
S′

x − Sz
sin θ

ρ

)
x̂ +

(
S′

y + Sz
cos θ sin φ

ρ

)
ŷ

+
(
S′

z + Sx
sin θ

ρ − Sy
cos θ sin φ

ρ

)
ẑ,

that, in view of Eq.(8), is equivalent to three scalar differ-
ential equations for the spin vector components

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

S′
x = fzSy −

(
fy − sin θ

ρ

)
Sz

S′
y = −fzSx +

(
fx − cos θ sin φ

ρ

)
Sz

S′
z =

(
fy − sin θ

ρ

)
Sx −

(
fx − cos θ sin φ

ρ

)
Sy

. (10)

In the assumed thin machine element the system (10) yields
three 3.rd order formally identical linear equations for the
three components of spin

⎧
⎨
⎩

S
′′′

+ ω2S′ = 0, with

ω2 =
(
fx − cos θ sin φ

ρ

)2

+
(
fy − sin θ

ρ

)2

+ f2
z .

(11)
The general integral of Eq.(11) is

S = C1 + C2 cosμ + C3 sin μ

with the angle of spin precession around the local axis

μ = ω δs.

δs is the trajectory path length through the element.
The result matrixM for Eq.(1) is

⎛
⎝

1− (B2 + C2)c ABc + Cs ACc− Bs
ABc− Cs 1− (A2 + C2)c BCc +As
ACc + Bs BCc−As 1− (A2 + B2)c

⎞
⎠ ,

(12)
with: c = 1− cosμ, s = sinμ and

⎧
⎨
⎩

A = 1
ω

(
fx − cos θ sin φ

ρ

)
,

B = 1
ω

(
fy − sin θ

ρ

)
, C = 1

ω fz

.

The determinant of M is

det(M) = 1− 2Dc +D2c2 +Ds2, D = A2 + B2 + C2.

As it should, it is det(M) = 1, since D = 1.

PARTICULAR CASES

Expand h to first order in the position and velocity using
f of Eq.(9)

h ≈ 1 +
x

ρ
sin θ − y

ρ
cos θ sin φ.

Horizontal bend

The field (axis of rotation) is vertical, along ŷ. It is

Bx = 0, By ≡ B �= 0, Bz = 0, θ = π/2, φ = 0,

h

Bρ
=

q

mγv

fx = 0, fy −
1
ρ

=
Gγ

ρ
− 1 + Gγ

ρ

x

ρ
, fz = 0.

The spin rotation angle around the vertical is

μ = ω δs =
q

mγ

[
Gγ

(
1 +

x

ρ

)
+

x

ρ

]
Bδs,

To lowest order the spin rotation angle is proportional to
the integrated magnetic field with a coefficient Gγ.

Quadrupole

The strength of a quadrupole is defined through the pa-
rameter K1 and the beam rigidity pc/q

K1 = −∂B/∂r

pc/c
.

The magnetic field, at the particle transverse location in the
laboratory coordinates, has components

Bx = K1(pc/q)y, By = K1(pc/q)x, Bz = 0.

The axis angles are θ, and φ (assume) = π/2

cos θ = Bx/B, sin θ = By/B, B =
√

B2
x + B2

y ,

the curvature parameter is h/(Bρ) = q/(mγv), and

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

fx −
cos θ

ρ
=

cos θ

ρ
[Gγ + (1 + Gγ) o(1)]

fy −
sin θ

ρ
=

sin θ

ρ
[Gγ + (1 + Gγ) o(1)]

,

with

o(1) =
x sin θ + y cos θ

ρ

After quadrature and root extraction, only retaining first or-
der terms in the transverse position of the beam, the angle
kick is then

μ = ωδs =
q

mγ
{Gγ [1 + o(1)] + (1 + Gγ) o(1)}B δs.

To lowest order the spin rotation angle in a quadrupole, and
for the matter in any element with transverse field, is pro-
portional to the integrated field with a coefficient Gγ
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Radio frequency dipole. Horizontal

Only the radial component of the magnetic field is
present

Bx = B �= 0, By = Bz = 0.

In this device the radial field B is oscillatory, producing a
vertical oscillation of the beam that modulates the vertical
betatron oscillation. When the frequency of B is varied, a
spin resonance condition can be reached that generates a
spin flip.

The instantaneous vertical orbit kick is

δpy =
B δs

pc/c
cosΦ, Φ = 2π

∫
f dt,

with Φ a phase angle and f the modulation frequency,
The preceding formalism for the horizontal bend applies,

just exchanging the rôles between.fx and fy . The resulting
spin precession angle kick is, to leading order

μ = Gγ δpy.

Solenoid - no fringe

Only the longitudinal component of the magnetic field
does not vanish

Bx = By = 0, Bz ≡ B �= 0,

also the trajectory is not bent: 1/ρ = 0. To lowest order the
spin rotation angle is

μ = ωδs =
q

mγ
(1 + G)Bδs,

General rotation matrix

For a rotation axis set to any direction in space, with an
angle θ, latitude, with repect the horizontal plane x̂, ẑ and
an angle φ, longitude, with respect to the longitudinal axis
, for the general rotation matrix of Eq.(12) it is

A = cos θ sin φ, B = sin θ, C = cos θ cosφ

As before
c = 1− cosμ, s = sin μ,

with μ the angle of spin rotation.
We use this formalism to characterize elements like thin

lens Siberian snakes. E.g. in RHIC full snakes, we have
θ = 0, φ = 450, and μ = 1800, to indicate that the axis
of the snake is in the horizontal plane, makes a 45 degrees
angle with the longitudinal axis, and rotates the spin by
180o. In the AGS partial snakes the axis is longitudinal
φ = 1800, and the rotation of the spin is about 300.

CONCLUSIONS AND
ACKNOWLEDGMENTS

This remake of an old note [3] was done when we re-
alized that at the time only the horizontal curvature of the

orbit was considered in the algorithms for Spink, which did
not appreciably affect simulation of high energy polarized
protons and therefore did not attract much attention.

This was also pointed out by Sateesh Mane who stressed
that in the general theory by Kondratenko [4] as well as
in his work [5] and [6] for spin motion there was always
reference to the actual orbit of the particle in space.

Ernest Courant [7] also showed how one can arrive at the
right formulation by integrating together the BMT equation
for spin precession and the Lorentz trajectory equation.

W.Waldo MacKay [8] stressed in particular how for a
correct formalism for spin precession it is important to con-
sider the BMT equation in its original covariant form.

Andreas Lehrach motivated much of this work by the
need to correctly interpret deuteron polarization measure-
ments at COSY [9]. See a companion paper by ours in this
Conference.

We had extended discussions on algorithms for spin
tracking with Vahid Ranjbar of TechX Corp., who is a part-
ner in systematic work aimed at making Spink an even more
useful and fiendly tool for the spin community of accelera-
tor physicists.
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