A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

storage-ring

Paper Title Other Keywords Page
MOZAG02 Short Bunches in Electron Storage Rings and Coherent Synchrotron Radiation radiation, optics, electron, synchrotron 26
 
  • G. Wuestefeld
    BESSY GmbH, Berlin
  Significant progress has been made in recent years in achieving short bunches in third generation synchrotron light sources and the generation of coherent radiation. This talk will review the properties of the radiation and the associated beam dynamics, and will discuss optics issues and the limits of the available techniques.  
slides icon Slides  
 
MOZBG01 Vacuum Performances in the Most Recent Third Generation Synchrotron Light Sources vacuum, synchrotron, impedance, radiation 31
 
  • E. Al-Dmour
    ALBA, Bellaterra
  Several 3rd generation synchrotron light sources were built and commissioned during the last ten years. The vacuum system of these light sources was designed using different approaches, but with the same objectives which guarantee the lowest outgassing rate and the highest pumping speed that by the end will achieve the lowest influence in the circulated beam (longest life time, the lowest impedance and instabilities, etc). The performance of recently commissioned rings (DIAMOND, SOLEIL and the Australian Light Source) are presented, together with a comparison of the different approaches which have been used in the design of the vacuum system and the lessons for the design of new vacuum systems.  
slides icon Slides  
 
MOZCG01 Top-Up Operation in Light Sources injection, booster, emittance, single-bunch 36
 
  • H. Ohkuma
    JASRI/SPring-8, Hyogo-ken
  The top-up operation for user experiments has been performed at several light sources, and at most of the new light sources the top-up operation is considered in their design phase. In this paper, an overview of the top-up status in light sources is presented, including the performance of injectors for top-up in light sources, technological aspects, examples and operational data from existing machines and proposed upgrades, etc.  
slides icon Slides  
 
MOPC011 Improvement and Recent Results of the DELTA Storage Ring FEL laser, electron, alignment, undulator 88
 
  • H. Huck, R. Burek, G. Schmidt, K. Wille
    DELTA, Dortmund
  Several modifications to the storage ring FEL at DELTA have been conducted, in order to enhance speed and reproducability of mirror alignment as well as flexibility of electron beam settings. We present the new hardware design and experimental results at a laser wavelength of 470 nm. Lasing was achieved with different filling patterns, and the output power of the FEL was measured. By modulating the accelerating RF the laser macropulses can be forced into a Q-switch mode, varying between roughly 10 and 250 Hz without significant loss of outcoupled average power. A special input optics setup for a streak camera enables simultaneous measurement of electron beam and laser pulse dynamics, to study the correlations between them. Recent measurements will be presented.  
 
MOPC041 Microfabrication of Relativistic Electron Beam by Laser and its Application to THz Coherent Synchrotron Radiation electron, laser, radiation, synchrotron 163
 
  • M. Katoh, M. Adachi, S. I. Kimura, A. Mochihashi, M. Shimada
    UVSOR, Okazaki
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex
  • T. Hara
    RIKEN Spring-8 Harima, Hyogo
  • M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • T. Takahashi
    KURRI, Osaka
  It is well known that broadband coherent synchrotron radiation (CSR) is emitted by an electron bunch whose length is shorter than radiation wavelength. However, even a long electron bunch can emit CSR when it has micro-density structure whose characteristic length is equal to the radiation wavelength. Recently, we have demonstrated that, by injecting amplitude modulated laser pulses into an electron storage ring, quasi-monochromatic and tunable terahertz (THz) CSR could be produced. In this method, periodic micro-density structure of THz scale was created on the electron bunch, as the result of the laser-electron interaction. The bunch emitted quasi-monochromatic THz radiation in a uniform dipole filed, not in an undulator. This new technology provides a way to imprint periodic wave patterns inside the electron bunch phase space. In adding to the light source applications, this would be a new tool to investigate electron beam dynamics.  
 
MOPC047 Status of Kharkov X-ray Generator NESTOR Based on Compton Back Scattering injection, electron, laser, scattering 175
 
  • I. M. Karnaukhov, V. P. Androsov, E. V. Bulyak, A. N. Dovbnya, I. V. Drebot, P. Gladkikh, V. A. Grevtsev, Yu. N. Grigor'ev, A. Gvozd, V. E. Ivashchenko, I. I. Karnaukhov, N. Kovalyova, V. P. Kozin, V. P. Lyashchenko, V. S. Margin, N. I. Mocheshnikov, A. Mytsykov, I. M. Neklyudov, F. A. Peev, A. Reuzaev, A. A. Shcherbakov, S. Sheyko, V. L. Skirda, Y. N. Telegin, V. I. Trotsenko, A. Y. Zelinsky, O. D. Zvonarjova
    NSC/KIPT, Kharkov
  • J. I.M. Botman
    TUE, Eindhoven
  The purpose of the NESTOR (New Electron STOrage Ring) project is to create intense X-ray generator based on compact storage ring and Compton back scattering in the National Science Centre “Kharkov Institute of Physics and Technology”. It allows to carry out investigations in the wide range of fundamental and applied sciences such as physics, biology, medicine and so on. The facility consists of the compact 40-225 MeV storage ring, linear 35-90 MeV electron accelerator as an injector, transportation system and Nd:Yag laser and optical cavity. In addition to hard Compton radiation it is supposed to use 4 soft vacuum ultraviolet radiation channels of natural synchrotron radiation of dipole. The facility is going to be in operation in the middle of 2009 and the expected X-rays flux will be of about 1013 phot/s. In the paper the main facility parameters are presented.  
 
MOPC048 Coherent Synchrotron Radiation Burst from Electron Storage Ring under External RF Modulation radiation, synchrotron, synchrotron-radiation, electron 178
 
  • Y. Shoji
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • T. Takahashi
    KURRI, Osaka
  It is known that a high-peak-current beam in an electron storage ring emits a burst of coherent synchrotron radiation (CSR) in the THz region. This CSR is powerful and easily obtained with no special expense, but is not used by synchrotron radiation users. This is because the burst arises from a fine time structure in the bunch due to longitudinal beam instabilities, and is unstable. We quantitatively investigated its time structure to find out how unstable it is. The measurements of CSR from one bunch showed that with an average period of 10ms (comparable with the damping time, 12 ms) the fluctuation of averaged power was about 10%. This would be reduced to 1% with 100 bunches. The fluctuation ratio had small dependence on beam charge, rf acceleration voltage and momentum compaction factor. The successive bursts had a correlation because the beam had a memory of former bursts. This worked to reduce the fluctuation in long period. When the rf phase was modulated with 2fs (twice of the synchrotron oscillation frequency), the burst structure was modulated with 2fs and the long term fluctuation was reduced. This modulation can be used to eliminate background noise in user experiments.  
 
MOPC049 Comparative Study of Vibration Stability at Operating Light Source Facilities and Lessons Learned in Achieving NSLS II Stability Goals site, ground-motion, lattice, electron 181
 
  • N. Simos, M. Fallier
    BNL, Upton, Long Island, New York
  • H. Amick
    Colin Gordon, Associates, San Bruno
  Understanding the correlation between storage ring vibration and electron beam oscillation is key in achieving the design beam parameters of a 3rd generation light source. Spectral properties of the vibration at the storage ring floor, in addition to amplitude, and its relation to the dynamic properties of the lattice govern the complex relation between lattice movement and beam jitter. Spectral characteristics are, in general, site-specific and motions exhibit spatial variability. To best describe the relationship between the ground motion field at the NSLS II site and the accelerator while quantifying the storage ring oscillations resulting from its interaction with the undisturbed site, field studies have been conducted at various light source facilities. By using the same metric data characterizing the achieved stability levels in operating light sources are generated and used in the assessment of the NSLS II stability which in turn linked to the specific site, subsurface and design characteristics. The paper summarizes the results of these comprehensive findings and presents an overall assessment of stability levels that can be achieved.

Work performed under the auspices of the US DOE.

 
 
MOPC050 Ground Motion Studies at NSLS II site, ground-motion, background, scattering 184
 
  • N. Simos, M. Fallier
    BNL, Upton, Long Island, New York
  • H. Amick
    Colin Gordon, Associates, San Bruno
  In 3rd generation light sources such as the 3 GeV NSLS II under design at BNL, strict requirements associated with vibration on the storage ring floor are imposed in order to minimize the jitter in the electron beam. Spectral characteristics storage ring vibration and dynamic properties of the ring lattice are controlling parameters. Ground motion at the NSLS-II site is characterized by a complex spectrum consisting of fast and slow motions stemming from natural and cultural sources. Cultural noise with frequencies higher than a few Hz has the potential of dramatically affecting the accelerator performance. In this study, an array of vibration measurements at the undisturbed NSLS II site has been made in order to establish the “green-field” vibration environment and its spectral characteristics. Its interaction with the NSLS II accelerator structure and the quantification of the storage ring vibration, both in terms of amplitude and spectral content have been assessed through a state-of-the-art wave propagation and scattering analysis. This paper focuses primarily on the wave propagation and scattering aspect as well as on the filtering effects of accelerator structural parameters.

Work performed under the auspices of the US DOE.

 
 
MOPC104 A New Method of Beam Stacking in Storage Rings antiproton, emittance, simulation, synchrotron 307
 
  • C. M. Bhat
    Fermilab, Batavia, Illinois
  Use of barrier buckets at synchrotron storage rings has paved way for development of new techniques for beam stacking in storage rings. The Fermilab Recycler, anit-proton storage ring, has been augmented with multipurpose broad-band barrier rf systems. Recently we have developed a new beam accumulation scheme called "longitudinal phase-space coating" that can be used for stacking beam over already e-cooled high intensity low emittance antiproton beam and demonstrated with beam experiments. Multi-particle beam dynamics simulations convincingly validate the concepts and practicality of the method. Starting with a proof-of-principle beam experiment both protons and anti-protons have been stacked a number of times using this technique in the Recycler. We present the results from both simulations and experiments. The method presented here is the first of its kind.  
 
MOPC114 Status of the Electrostatic and Cryogenic Double Ring DESIREE ion, vacuum, electron, proton 331
 
  • P. Löfgren, G. Andler, L. Bagge, M. Björkhage, M. Blom, H. Danared, A. Källberg, S. Leontein, L. Liljeby, A. Paal, K.-G. Rensfelt, A. Simonsson
    MSL, Stockholm
  • H. Cederquist, M. Larsson, S. Rosén, H. T. Schmidt
    Stockholm University, Department of Physics, Stockholm
  DESIREE is a double electrostatic storage ring being built at the Manne Siegbahn Laboratory and Stockholm University. The two rings in DESIREE have the same circumference, 8.7m, and a common straight section along which stored ions can interact. The ion optics for both rings will be housed in a single double walled vacuum chamber built like a cryostat with a radiation screen and several layers of super insulation in between the two chambers. The inner chamber, which holds all the optical elements, will be cooled by four cryogenerators attached to the bottom of this chamber. It is constructed in pure aluminum to ensure good thermal conductivity over the whole structure. The whole accelerator structure will be cooled below 20K. This low temperature in combination with the unique double ring structure will result in a powerful machine for studying interactions between cold molecular ions close to zero relative energy. The outer vacuum chamber is constructed in steel with a high magnetic permeability to provide an efficient screening of the earth magnetic field. DESIREE will be provided with two injectors which will be able to supply both positive and negative ions to both rings.  
 
MOPC116 On the Possibility of Realizing Shortest Bunches in Low-energy Storage Rings antiproton, ion, emittance, simulation 334
 
  • A. I. Papash, K.-U. Kuehnel, C. P. Welsch
    MPI-K, Heidelberg
  • A. A. Alzeanidi, M. O.A. El Ghazaly
    KACST, Riyadh
  • A. I. Papash
    JINR, Dubna, Moscow Region
  For some very interesting experiments in future low-energy storage rings it is highly desirable to realize ultra-short bunches in the nanosecond regime. These bunches could then be used for collision studies with atomic or molecular gas jet targets where the time structure of the bunches would be used as a trigger for the experiment. Thus, the control of the longitudinal time structure of the stored beam is of central importance since it directly determines the resolution of the envisaged experiments. Since many years, it has been a significant challenge for the storage ring accelerator-physics community to develop techniques to reduce the duration of bunches. Up to now, all methods that have been developed go along with various difficulties, which can include reduced stored-beam lifetimes. Thus, novel and innovative concepts for the manipulation and control of the longitudinal beam structure have to be developed. In this paper, novel approaches to realize shortest bunches in storage rings are presented.  
 
MOPC137 The Cryogenic Storage Ring Project at Heidelberg ion, cryogenics, vacuum, electron 394
 
  • R. von Hahn, K. Blaum, J. R. Crespo López-Urrutia, M. W. Froese, M. Grieser, M. Lange, F. Laux, S. Menk, D. Orlov, R. Repnow, C. D. Schroeter, D. Schwalm, T. Sieber, J. Ullrich, J. Varju, A. Wolf
    MPI-K, Heidelberg
  • H. Quack
    TU Dresden, Dresden
  • M. Rappaport, D. Zajfman
    Weizmann Institute of Science, Physics, Rehovot
  • X. Urbain
    UCL CRC, Louvain-la-Neuve
  At the Max-Planck-Institut für Kernphysik in Heidelberg a next generation electrostatic storage ring at cryogenic temperatures is under development. The main perspective of this unique cryogenic storage ring (CSR) is the research on ions, molecules and clusters up to bio molecules in the energy range of 20 keV -300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to achieve a vacuum of better than 1·10-15 mbar (corresponding to 1·10-13 mbar room temperature äquivalent). The low temperature and the extreme low vacuum will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. A 20 W at 2 K refrigerator was designed and successfully commissioned. A connection with the fully assembled cryogenic prototype ion trap is under way. In this paper the concept and the status of the cryogenic storage ring will be presented.  
 
MOPD016 ALS Storage Ring RF System Upgrade klystron, controls, power-supply, booster 478
 
  • K. M. Baptiste, J. Julian, S. Kwiatkowski
    LBNL, Berkeley, California
  ALS is one of the first third generation synchrotron light sources which has been operating since 1992 at Berkeley Lab. Presently, the ALS Storage Ring System is comprised of a single 330kW klystron feeding two normal-conducting single-cell RF cavities via a WR1800 circulator and magic-tee transmission system. The klystron has operated well beyond its expected lifetime and even though replacement klystrons are available from a different manufacturer, we have opted to build the replacement amplifier with a system of four Inductive Output Tubes, (IOT). The new amplifier system will use Cavity Combiners (CaCo) to combine IOT outputs and a magic-tee to combine IOT pairs to feed the existing transmission line connected to the cavities. The existing HVPS will be upgraded to interface with the four IOT amplifiers and its crowbar will be replaced with a series solid-state switch. The system is being designed to operate with the industry standard external cavity IOTs (80kW) and integral cavity IOTs (90-100kW). In this paper we will present the details of the upgrade of each of the sub-systems in the ALS Storage Ring RF System.  
 
MOPD018 Energy Dependent Measurements of Gamma and Neutron Dose at ANKA radiation, undulator, optics, electron 484
 
  • I. Birkel, E. Huttel, A.-S. Müller, N. J. Smale, P. Wesolowski
    FZK, Karlsruhe
  Gamma and neutron radiation dose rate around an electron storage ring are proportional to the number of lost particles in a certain time. They are depending on beam energy, current, lifetime and operating conditions of the storage ring. The online area monitoring network of ANKA makes it possible to measure the radiation from the decaying beam at eight stations distributed all over the ANKA hall. Measurements of the ambient dose at beam energies from 800 MeV to 2.5 GeV show higher dose rates around and in the forward direction of insertion devices and other devices with restricted horizontal or vertical aperture.  
 
MOPD029 Commissioning of the 2,2 kW, 476 MHz Solid State RF Power Source for the LNLS Booster Synchrotron booster, synchrotron, injection, electron 511
 
  • C. Pardine, R. H.A. Farias, P. F. Tavares
    LNLS, Campinas
  A 2.2 kW, 476 MHz unconditionally stable solid state RF amplifier for CW operation has been built, tested, and is being used since july 2007 at LNLS. The amplifier, designed and developed in collaboration with Synchrotron SOLEIL, is made of 9 modules, each one containing one push-pull 290 W MOSFET equipped with an internal circulator and RF load. Low cost, reliability, linearity and high efficiency are the main features we aimed for in this device, which was developed for the LNLS Booster Injector. In this paper, we present technical characteristics as well as test results of the system.  
 
MOPD033 The ALBA RF Amplifier System Based on Inductive Output Tubes (IOT) controls, factory, coupling, power-supply 523
 
  • P. Sanchez, D. Einfeld, M. L. Langlois, F. Pérez
    ALBA, Bellaterra
  • J. Alex, A. Spichiger, J. Stahl
    Thomson Broadcast & Multimedia AG, Turgi
  • C. Bel, G. Peillex-Delphe, P. Ponard
    TED, Thonon
  The ALBA accelerator RF systems include a complete new transmitter developed in collaboration between Thomson Broadcast & Multimedia (TBM), Thales Electron Devices (TED) and CELLS. A new IOT version, based on the previous TH793 has been developed by TED: the TH793-1, dedicated to scientific applications. It has demonstrated cw operation up to 90 kW at 500 MHz. In addition, a TH18973 LS cavity has also been developed, featuring a 6”1/8 coaxial RF output, an optimized cooling system and centred operation at 500 MHz, 7 MHz bandwidth and ± 5 MHz tuning range. TBM developed a new amplifier system to achieve high reliability and performance. Each IOT is powered by an individual power supply based on the Pulse Step Modulator technology. The amplifier control system was designed on a PLC controller with the possibility to interface with the Tango control system. The first amplifier was delivered to ALBA in summer 2007 and is already in use for the conditioning and testing of the first RF cavity. The remaining 13 amplifiers will be delivered in the second half of 2008. The paper gives an overview on the design and operation performance during commissioning and cavity testing.  
 
MOPD039 The Personnel Safety System of the Elettra Booster booster, controls, radiation, injection 538
 
  • K. Casarin, L. Battistello, S. Fontanini, F. Giacuzzo, M. Lonza, E. Quai, S. Sbarra, G. Tromba, A. Vascotto, L. Zambon
    ELETTRA, Basovizza, Trieste
  The new injector of the Elettra storage ring is based on a 100 MeV linac feeding a 3 Hz booster synchrotron. The booster is designed to accelerate the electron beam up to the maximum energy of 2.5 GeV, providing full-energy injection into the storage ring. The Personnel Safety System (PSS) of the new injector protects personnel from radiation hazards by controlling access to restricted areas and interrupting the machine operation in case unsafe conditions occur. The system is based on Programmable Logic Controller (PLC) technology providing redundant logic in a fail-safe configuration. This paper describes the radiation safety criteria that have been defined to minimize radiation exposure hazards as well as the technology and architecture chosen for the PSS implementation.  
 
MOPD041 The SSRF Radiation Safety Interlock System radiation, booster, controls, linac 541
 
  • X. J. Xu, J. H. Cai, J. Cai, K. M. Fang, Z. D. Hua, X. Liu, J. H. Wang, J. Q. Xu
    SINAP, Shanghai
  Radiation Safety Interlock System (RSIS) for the Shanghai Synchrotron Radiation Facility (SSRF) is composed of two subsystems, the Access Control System (ACS) and the radiation containment system (RCS).The ACS prevents personnel from being exposed to the extremely high radiation inside the SSRF shielding tunnel (or called the interlock area) during machine operation. The RCS prevents personnel from being exposed to the high radiation outside a shielding tunnel during either normal or abnormal operation. The implementation of the ACS is based on the Programmable Logic Controllers, key transfer interlocking systems and IC card system. The RSIS is based on fail-safe, redundancy, multiplicity. Any violation of the RSIS will result in the inhibiting of redundant permission to the associated interlock systems, and cease the injection process and eliminate the entire stored electron beam in the SSRF. This paper describes the design philosophy, the logic, and the implementation of the RSIS at SSRF.  
 
MOPP064 Secondary Electron Yield Measurements and Groove Chambers Update Tests in the PEP-II Beam Line electron, vacuum, simulation, positron 691
 
  • M. T.F. Pivi, F. King, R. E. Kirby, T. W. Markiewicz, T. O. Raubenheimer, J. Seeman, L. Wang
    SLAC, Menlo Park, California
  In the Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in straight sections to test this possible mitigation technique for the electron cloud effect in the positron damping ring (DR) of the future Linear Colliders such as ILC and CLIC. We have also installed chambers to monitor the secondary electron yield (SEY) of TiN, TiZrV (NEG) and technical accelerator materials under the effect of electron and photon conditioning in situ. Furthermore, we have also installed test chambers in a new 4-magnet chicane. We describe the ongoing R&D effort to mitigate the electron cloud effect in the ILC damping ring, the chambers installation in the PEP-II and latest results.  
 
MOPP084 Installation and Commissioning of the RF System for the New Elettra Booster booster, injection, controls, radiation 745
 
  • A. Fabris, M. Bocciai, L. Bortolossi, M. Ottobretti, C. Pasotti, M. Rinaldi
    ELETTRA, Basovizza, Trieste
  The commissioning of the new booster of the Elettra synchrotron radiation source started in Fall 2007. The RF system of the booster is made of a five cells accelerating cavity fed by a 60 kW 500 MHz power plant. The accelerating cavity voltage is ramped along with the booster energy at a 3 Hz repetition rate. The cavity field is controlled by analog feedback loops on amplitude, phase and the resonant frequency. This paper describes the setting into operation of the system and its performances during the commissioning phase of the machine.  
 
MOPP085 Bench Characterization of a Prototype of a 3rd Harmonic Cavity for the LNLS Electron Storage Ring impedance, electron, synchrotron, controls 748
 
  • R. H.A. Farias, D. A. Nascimento, C. Pardine, P. F. Tavares
    LNLS, Campinas
  The UVX electron storage ring at the Brazilian Synchrotron Light Laboratory suffers from longitudinal instabilities driven by a HOM of one of the RF cavities. The operational difficulties related to these unstable modes were successfully overcome by determining the proper cavity temperature set point in combination with phase modulation of the RF fields at the second harmonic of the synchrotron frequency. However, a serious drawback of the method is to increase the energy spread of the electron beam, which is detrimental for the undulator emission spectrum. The use of higher harmonic cavities is a more appropriate technique since it provides damping of the longitudinal modes without increasing the energy spread. A full scale prototype of a 3rd harmonic cavity was manufactured at the LNLS workshops and had its main rf properties measured. Special care was taken to measure the shunt impedance of the fundamental resonant mode since it determines how many cavities will be necessary for the adequate operation of the system, which is designed to operate in passive mode. In this work we present the results of the bench characterization of the cavity.  
 
MOPP097 Measurements on the Rf Cavity for the ALBA Storage Ring impedance, coupling, vacuum, pick-up 781
 
  • M. L. Langlois, M. Cornelis, F. Pérez, P. Sanchez
    ALBA, Bellaterra
  ALBA storage ring will use 6 ambient temperature nose cone HOM damped cavities tuned at 500 MHz, designed at BESSY and known as the EU cavity. A first one, manufactured by ACCEL, was delivered in 2007 to investigate on its behaviour. This paper describes the data collected during investigation. First, bead-pull measurements were performed to assess impedance, both on fundamental and high order modes. Emphasis was put on E011, due to the discrepancy between expected values and results for this mode. The vacuum bake-out and related pressure are shown. Then, the cavity was conditioned and observations were made on multipacting levels, conditioning time and surface temperatures. The latter were found inhomogeneous and leads are detailed to avoid local overheating.  
 
MOPP108 Status of HOM Damped Room-temperature Cavities for the ESRF Storage Ring coupling, impedance, simulation, damping 808
 
  • V. Serriere, A. K. Bandyopadhyay, L. Goirand, J. Jacob, D. Jalas, B. Ogier, A. Triantafyllou
    ESRF, Grenoble
  • N. Guillotin
    SOLEIL, Gif-sur-Yvette
  At the ESRF, longitudinal coupled bunch instabilities driven by cavity HOM are currently avoided up to the nominal current of 200 mA by precisely controlling the temperatures of the six five-cell cavities installed on the storage ring. A longitudinal bunch by bunch feedback has recently allowed to overcome the remaining HOM and thereby increase the current in the storage ring to 300 mA. In parallel, HOM damped room-temperature cavities are being developed for highly reliable passive operation at 300 mA. They are designed for a possible later upgrade to higher currents.  
 
TUXM02 Performance and Trends of Storage Ring Light Sources emittance, photon, brilliance, radiation 993
 
  • R. Bartolini
    Diamond, Oxfordshire
  We present an overview of the performance of the latest generation of operating storage ring light sources. Emphasis is given to the comparison of design parameters to the achieved performances. Trends and innovations of established light sources to meet the increasing user’s demand for high brightness and different time structures will be presented. Report on upgrades and improvements will be given including orbit stability, top-up, feedback systems, lower-ID gap operation and a review of the activities for the generation of ultra-short radiation pulses in storage rings.  
slides icon Slides  
 
TUOAM01 Commissioning Status of the Shanghai Synchrotron Radiation Facility booster, injection, linac, feedback 998
 
  • Z. T. Zhao, H. Ding, H. Xu
    SINAP, Shanghai
  The Shanghai Synchrotron Radiation Facility (SSRF), an intermediate energy storage ring based third generation light source, is under commissioning at a site in Shanghai Zhang-Jiang Hi-Tech Park. The ground breaking of this project was made on Dec.25, 2004, and on Dec.24, 2007 electron beam was stored and accumulated in the SSRF storage ring. Since then the accelerator commissioning and beamline installation have been being continued toward the scheduled user operation from May 2009. This paper presents an overview of the SSRF status and its machine commissioning progress.  
slides icon Slides  
 
TUOBM01 Advanced Design of the FAIR Storage Ring Complex antiproton, ion, injection, electron 1004
 
  • M. Steck, C. Dimopoulou, A. Dolinskii, O. E. Gorda, V. Gostishchev, K. Knie, S. A. Litvinov, I. Nesmiyan, F. Nolden, D. Obradors-Campos, C. Peschke
    GSI, Darmstadt
  The storage ring complex of the FAIR comprises three storage rings with a magnetic rigidity of 13 m. Each of the three rings, CR, RESR, and NESR, serves specific tasks in the preparation of secondary beams, rare isotopes and antiprotons, or for experiments with heavy ion beams. The CR is optimized for fast stochastic pre-cooling of secondary beams. The RESR design has been recently revised for optimum performance of antiproton accumulation. The concept for the installation of both rings in a common building is elaborated. The ion optical and engineering design of the NESR for experiments with heavy ions, the deceleration of ions or antiprotons for a subsequent low energy facility, and the accumulation of rare isotope beams is proceeding. A section for collision experiments with circulating ions and counter propagating electrons or antiprotons has been worked out. This report will give a summary of the various new concepts conceived in the process of the design of this new storage ring facility.  
slides icon Slides  
 
TUOBM04 FFAGs for the ERIT and ADS Projects at KURRI proton, target, booster, injection 1013
 
  • T. Uesugi, H. Horii, Y. Kuriyama, K. Mishima, Y. Mori, A. Osanai, T. Planche, S. Shiroya, M. Tanigaki, H. Yoshino
    KURRI, Osaka
  • M. Inoue
    SLLS, Shiga
  • Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • M. Muto
    FFAG DDS Research Organization, Tokyo
  • K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fului
  A chain of FFAG proton accelerator have been under construction at Kyoto University Research Reactor Institute (KURRI), Osaka, for the study of accelerator driven system (ADS) since 2004. The accelerator is a cascade type and composed of three different FFAG rings: injector, booster and main ring. The maximum energy of the main ring is 150 MeV for proton. The beam was successfully accelerated and extracted from the booster in June of 2006 and the beam commissioning of the main ring has started since then. Recently the beam has been successfully injected into the main ring.  
slides icon Slides  
 
TUOCM03 Beam Loss Position Monitoring with Optical Fibres at DELTA radiation, beam-losses, injection, vacuum 1032
 
  • F. Rüdiger, G. Schmidt, K. Wille
    DELTA, Dortmund
  • W. Goettmann
    HMI, Berlin
  • M. Koerfer
    DESY, Hamburg
  Detection of ionising radiation with optical fibres is used to localize beam losses. At DELTA three different systems are in use. Optical Time Domain Reflectometry (OTDR) is used to measure radiation doses along the full length of the storage ring vacuum chamber. Transmission measurement of optical fibre loops is used for surveillance of radiation sensitive objects like Undulator permanent magnets. Integration into the DELTA control system offers the possibility to react on increased doses within several minutes. Detection of Cerenkov radiation offers real-time beam loss position monitoring with single-bunch resolution of 2 ns. With up to four fibres mounted at different positions along the vacuum chamber spatial measurement of beam loss is used to increase injection efficiency.  
slides icon Slides  
 
TUPC010 Single Bunch Studies at the Australian Synchrotron impedance, single-bunch, synchrotron, diagnostics 1062
 
  • R. T. Dowd, M. J. Boland, G. LeBlanc, M. J. Spencer, Y. E. Tan
    ASP, Clayton, Victoria
  Studies using a single high charge electron bunch have been conducted at the Australian Synchrotron to characterise the impedance of the machine at various stages of commissioning and insertion device configuration. This paper will present the results of these studies and show the time evolution of machine impedance with increasing number of insertion devices.  
 
TUPC015 Data Acquisition and Analysis in SSRF BPM System booster, electron, controls, closed-orbit 1077
 
  • Y. B. Yan, Y. Z. Chen, Y. B. Leng, W. M. Zhou, Y. Zou
    SINAP, Shanghai
  The beam position monitor (BPM) system in Shanghai Synchrotron Radiation Facility (SSRF) is fully (Linac, transfer line, booster and storage ring) equipped with Libera Electron BPM Processors. Primary data acquisition and position calculation has been done in Libera FPGA. EPICS support package developed by Diamond Light Source has been adapted to link BPM system with accelerator control system. Two dedicated soft IOCs are introduced to collect beam position data from all Libera IOCs and calculate RMS noise, histogram, spectrum and phase space, etc. online. Other BPM based analysis is completed via MATLAB scripts. The initial results during booster and storage ring commissioning will be described in this paper.  
 
TUPC017 Beam Instrumentation System Development and Commissioning in SSRF booster, linac, feedback, diagnostics 1080
 
  • Y. B. Leng, J. Chen, Y. Z. Chen, Z. C. Chen, G. Q. Huang, D. K. Liu, Y. B. Yan, K. R. Ye, C. X. Yin, J. Yu, L. Y. Yu, R. Yuan, G. B. Zhao, L. Y. Zhao, W. M. Zhou, Y. Zou
    SINAP, Shanghai
  In recent months the first beams have been stored in the Storage Ring of the Shanghai Synchrotron Radiation Facility (SSRF). The brief introduction will be given of the beam diagnostics system development. The initial commissioning results including beam profile monitors, beam position monitors (BPMs), DC current monitors (DCCT), and synchrotron radiation monitor (SRM) will be reported in this paper.  
 
TUPC038 Filling Pattern Measurement for the Taiwan Light Source photon, synchrotron, injection, controls 1137
 
  • C. Y. Wu, J. Chen, K. T. Hsu, K. H. Hu, C. H. Kuo
    NSRRC, Hsinchu
  Filling pattern will affect various operation performance of a synchrotron light source. Measurement of the filling pattern correctly is important. The dedicated filling pattern measurement system has been implemented in 2004 for multi-bunch operation in top-up operation mode. Measurement the purity of an isolated bunch by using time correlated single photon counting method is also addressed. Results are presented in this report.  
 
TUPC054 Pulse-by-pulse Photon Beam Monitor with Microstripline Structure in NSRRC photon, synchrotron, synchrotron-radiation, impedance 1176
 
  • C. K. Kuan, C. L. Chen, J.-R. Chen, G.-Y. Hsiung, I. C. Sheng, Z.-D. Tsai, D.-J. Wang
    NSRRC, Hsinchu
  • H. Aoyagi, H. Kitamura, S. Takahashi
    JASRI/SPring-8, Hyogo-ken
  In order to diagnostic pulse-by-pulse beam movement of photon beam, NSRRC(Taiwan) and SPring-8 (Japan) have worked together to develop a front end beam monitor with microstripline structure, which is designed to have specific impedance of 50 ohm. The detector head is composed of a metal line (copper), ceramic plates (aluminum nitride) and a cooling base (copper tungsten). The metal line functions as a photocathode. The metal line is directly connected to SMA feed-through connectors to have fast response time. The detector head has been fabricated in SPring-8, and mounted on the monitor chamber and installed in NSRRC Superconducting Wiggler (SW) front end. The beam monitor can be used to examine not only pulse-by-pulse photon beam, but also the storage ring intensity and the pulse timing. Unique feature of the monitor is to produce unipolar short pulses. The design, fabrication and the measurement will be presented in this paper.  
 
TUPC055 Operating MCP Detectors at Cryogenic Temperatures cryogenics, vacuum, electron, ion 1179
 
  • K.-U. Kuehnel, C. D. Schroeter, J. Ullrich
    MPI-K, Heidelberg
  At present, a low energy electrostatic storage ring operating at cryogenic temperatures down to 2 K is being build up at the MPI-K in Heidelberg. Both, beam diagnostics and experiments rely on the use of position sensitive micro-channel plate (MCP) detectors equipped with phosphor screens or delay line anodes. Since little is known about the performance of these detector types in a cryogenic environment a test chamber was built to investigate their properties. A delay line MCP detector was successfully tested at temperatures as low as 25 K. In this contribution the detailed results of theses tests as well as possible applications of the detector are presented.  
 
TUPC056 A Novel Beam Profile Monitor Based on a Supersonic Gas Jet target, ion, antiproton, extraction 1182
 
  • K.-U. Kuehnel, M. Putignano, C. D. Schroeter, J. Ullrich, C. P. Welsch
    MPI-K, Heidelberg
  At very low residual gas pressure below 10-12 mbar, as foreseen in future low-energy storage rings currently under development at the MPI-K and FAIR, conventional residual gas beam profile monitors cease to work with reasonable count rates. One possible way to overcome this restriction is the use of a supersonic gas jet as a profile monitor. Such a jet could be shaped as a thin curtain, thus providing a uniform target with a variable target density extended over the whole beam. A possible setup of such a device taking into account vacuum considerations, expected count rates and an envisioned detection scheme are presented in this contribution.  
 
TUPC082 Research and Development Program on Beam Position Monitors for NSLS-II Project vacuum, emittance, synchrotron, diagnostics 1245
 
  • I. Pinayev, R. Alforque, A. Blednykh, P. Cameron, V. Ravindranath, S. Sharma, O. Singh
    BNL, Upton, New York
  The NSLS-II Light Source which is planned to be built at Brookhaven National Laboratory is designed for horizontal emittances below 1 nm and will provide users with ultra-bright synchrotron radiation sources. In order to utilize fully the very small emittances and electron beam sizes, submicron stability of the electron orbit in the storage ring needs to be provided. This can only be achieved with high stability beam position monitors. The research program presently carried is aimed for characterization of commercially available RF BPM receivers and on the development of high stability mechanical supports for BPM modules. The details of the program and preliminary results are presented.  
 
TUPC091 Measurement of Quadrupolar Tune Shifts under Multibunch Operations of the Photon Factory Storage Ring single-bunch, synchrotron, quadrupole, factory 1269
 
  • S. Sakanaka, T. Mitsuhashi, T. Obina
    KEK, Ibaraki
  The quadrupolar tune shifts were observed under a single-bunch operation of the Photon Factory storage ring at KEK, which indicated that a quadrupolar component of wakefields affected the motion of an electron bunch. We recently measured the quadrupolar tune shifts under a multibunch operation of the Photon Factory storage ring. To detect the transverse quadrupole-mode oscillations of electron bunches, we used an avalanche photo diode (APD) which can detect visible synchrotron light with short rise-time of less than 1 ns. As a result, we observed that the quadrupolar tunes depended on the total beam current by 0.0082 1/A (in horizontal) and -0.0082 1/A (in vertical), respectively. These tune shifts can be caused by a quadrupolar component of long-range wakefield.  
 
TUPC108 DITANET–A European Training Network on Novel Diagnostic Techniques for Future Particle Accelerators diagnostics, ion, antiproton, instrumentation 1314
 
  • C. P. Welsch
    KIP, Heidelberg
  • C. P. Welsch
    GSI, Darmstadt
  Beam diagnostics systems are essential constituents of any particle accelerator; they reveal the properties of a beam and how it behaves in a machine. Without an appropriate set of diagnostic elements, it would simply be impossible to operate any accelerator complex let alone optimize its performance. Future accelerator projects will require innovative approaches in particle detection and imaging techniques to provide a full set of information about the beam characteristics. The European Training Network DITANET covers the development of advanced beam diagnostic methods for a wide range of existing or future accelerators, both for electrons and ions. The developments in profile, current, and position measurement techniques stretch beyond present technology and will mark the future state of the art. This contribution presents the scientific challenges that will be addressed within the next four years, together with the networks' structure.  
 
TUPC112 Equipment for Electrons Energy Measurement in HLS electron, beam-losses, polarization, energy-calibration 1326
 
  • H. Xu, G. Feng, B. Sun, L. Wang, J. F. Zhang, X. Zhao
    USTC/NSRL, Hefei, Anhui
  The parameters necessary to dimension an equipment for the measurement of the beam energy of a storage ring via the resonance depolarisation are collected for HLS . The electron beam polarizes naturally due to the Sokolov-Ternv effect. For Hefei light source(HLS), the polarisation time is approx 4.346 h at 800MeV. The calculated value 4.346h is only for reference. The radial field will be applied to the beam by a pair of striplines mounted in the storage ring vacuum chamber. When input power is 12.5w, with OPRA program, intergrated field is calculated on axial. Different input power V. S integral field is also calculated. Which the depolarization time V. S input power can calculated by the below. The beam loss system for the electron storage ring of HLS can be used to measure the relative change of Touschek lifetime. It is expected that the relative change of Touschek lifetime due to beam depolarization will be measured in the future.  
 
TUPC117 Beam Based Alignment of Quadrupole Triplets by Use of MATLAB Based Modeling quadrupole, survey, alignment, optics 1341
 
  • O. Kopitetzki, D. Schirmer, G. Schmidt, K. Wille
    DELTA, Dortmund
  A new beam based method is introduced to measure the transversal shifts of quadrupole magnets in relation to each other within triplet structures. The displacements of the quadrupole magnets can be calculated by quadrupole strength variation in combination with a simulation of the orbit distortions utilizing a MATLAB based model for beam optics. A local smoothing of the quadrupole alignment can be achieved with accuracy better than those of geodetic surveys. Results are presented and compared with data from geodetic surveys.  
 
TUPC119 Corrector Based Determination of Quadrupole Centres quadrupole, dipole, closed-orbit, feedback 1347
 
  • M. Sjöström, M. Eriksson, L.-J. Lindgren, E. J. Wallén
    MAX-lab, Lund
  A corrector magnet based method to determine the quadrupole magnet centres for storage rings has been tested on the MAX III synchrotron light source. The required corrector magnet strengths for the corrected beam orbit are used to determine the quadrupole magnet centre positions. This method is the most effective for an optimal distribution of beam position monitors and corrector magnets in the storage ring and will be used as a basis for the MAX IV storage rings.  
 
TUPC127 Utility Design for the 3GeV TPS Electron Storage Ring synchrotron, booster, controls, synchrotron-radiation 1365
 
  • J.-C. Chang, Y.-C. Lin, Y.-H. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
  Having been running the Taiwan Light Source (TLS) for fourteen years since its opening in 1993, National Synchrotron Radiation Research Center (NSRRC), Taiwan, has been approved to build a photon source (TPS) last year. TPS is preliminarily designed with 3.0 GeV in energy, 518.4m in circumference and 24 Double-Bend Achromat (DBA). The utility system, including the electrical power, cooling water and air conditioning system of the TPS were designed to meet requirements of high reliability and stability. Because the power consumption of the TPS is estimated about three times that of TLS, energy saving is another consideration. This paper therefore discusses utility design concepts and presents partial design results, including capacity requirements, equipment and piping layouts.  
 
TUPC128 Air Temperature Analysis and Control Improvement for the EPU 5.6 at TLS controls, simulation, insertion, insertion-device 1368
 
  • J.-C. Chang, Y.-C. Chung, C.-Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
  This paper presents the air temperature analysis and control improvement for area of the elliptically polarizing undulator EPU 5.6 in the Taiwan Light Source (TLS). To enhance uniformity of ambient air temperature, we applied mini environmental controls and installed five cross flow fans in this area. Eight temperature sensors were installed around the EPU to monitor temperature variation. We also simulated the flow field and temperature distribution in this area by using a computational fluid dynamics (CFD) code. The simulation results were validated by comparing to measured data. The temperature variation along time and spatial temperature differences were controlled within 0.1 degree C and 0.5 degree C, respectively.  
 
TUPC148 Digital LLRF for ALBA Storage Ring controls, vacuum, resonance, diagnostics 1419
 
  • A. Salom, F. Pérez
    ALBA, Bellaterra
  ALBA is a 3 GeV, 400 mA, 3rd generation Synchrotron Light Source that is in the construction phase in Cerdanyola, Spain. The RF System will have to provide 3.6 MV of accelerating voltage and restore up to 540 kW of power to the electron beam. A Digital LLRF prototype has been developed for the Storage Ring RF Cavity. The prototype is based on the IQ modulation/demodulation technique and it has been implemented using a commercial FPGA cPCI board. The prototype has been installed in the high power RF lab of CELLS and tested to control up to 80 kW on the real Storage Ring Cavity. The test results of the control loops (amplitude, phase and tuning) will be presented, as well as the hardware structure (digital boards, analogue front ends, timing, etc.) and the system interface.  
 
TUPD006 The Injection and Extraction Kicker Circuits for the Elettra Booster kicker, extraction, injection, booster 1443
 
  • R. Fabris, P. Tosolini
    ELETTRA, Basovizza, Trieste
  The design, realization and performance of the power circuits for the Booster injection and extraction Kicker magnets are presented. Both circuits have been designed and developed with the goal to achieve reliable working conditions, simple maintenance and fast recovery time in case of failures. The circuits are designed around the same switching unit already adopted in the Kicker system of the Storage Ring injection; this allows storing common spare parts for both circuits and for the Storage Ring Kicker system as well. Beside the analytical analysis, a parametric study of the circuit, with the Microsim PSPICE software package, allowed to optimize the performance of the circuit regarding the parameters which were considered critical for the Booster injection and extraction processes, i. e. the current pulse rise time and fall time.  
 
TUPD007 The Design and Fabrication of the Kicker Power Supply for TPS Project kicker, injection, power-supply, photon 1446
 
  • C.-S. Fann, K. T. Hsu, S. Y. Hsu, K.-K. Lin, K.-B. Liu, Y.-C. Liu, C. Y. Wu
    NSRRC, Hsinchu
  The preliminary test results of the kicker power supply for TPS (Taiwan Photon Source) project will be presented in this report. The achieved capability of this test unit demonstrates that it fulfills the design requirement of providing half-sine pulsed current of 2.5 kA (peak), 5.2 s (base-width), with jitter < 1 ns (peak-to-peak). Both units of using thyratron and IGBT switches are built with the same requirements. The technical considerations of both units for this particular application will be discussed.  
 
TUPD028 How to Stably Store Electron Beam in a Synchrotron Radiation Facility from the Point of View of an RF System Design klystron, synchrotron, electron, synchrotron-radiation 1485
 
  • Y. Kawashima, H. Ego, Y. Ohashi
    JASRI/SPring-8, Hyogo-ken
  • M. Hara
    RIKEN Spring-8, Hyogo
  In any synchrotron radiation facilities, the users wish that electron beams are stably stored without beam abortion for as long as possible. It must be recognized that RF system is a main cause of beam abortions. In order to store beam stably, it is necessary for staffs in charge of RF system to foresee various beam instabilities and to take measures. Before discussing coupled-bunch instability problems, one should understand some trivial issues such as ion trapping and fundamental acceleration frequency modulated by high voltage ripple. The former causes transverse mode instability and the latter shakes stored electron beam longitudinally in RF cavities. In newly designed synchrotron radiation facilities, those issues mentioned above should be suppressed before beam commissioning. As for other issues relating with RF system, we would like to state the importance of a water-cooling system with stable temperature for cavities, and the electric earth problem of low level RF system and high voltage power equipment of a klystron. We describe how we have managed those issues in designing of SPring-8 RF system of the storage ring.  
 
TUPP004 Evolution and Status of the Electronic Logbooks at the ESRF controls, power-supply, synchrotron, radio-frequency 1532
 
  • L. Hardy, J. M. Chaize, O. Goudard
    ESRF, Grenoble
  • S. D. Cross, D. Fraser, N. V. Hurley
    St James Software, Cape Town
  In 2004 the ESRF moved to electronic logbooks. Such logbooks should be configurable enough to be used in several situations: document management, exchange of technical information and, in the Control Room, as a powerful tool for storing and retrieving information at a glance. The St James software company developed such a product which met our constraints and which is easy to configure. Moreover, this product can be tailored and evolved with time by its users and allows automatic access to control system parameters. After gaining experience with several logbooks using the old version 4 system, a new more user-friendly version which offers extensive customisation possibilities has been launched. This new version, J5, has already been interfaced to the ESRF control system (Tango) through a Python binding. This allows automatic triggering of records on specific events and the generation of automatic reports from the history database system. J5 can use an LDAP server for security management.  
 
TUPP020 Analysis of Collective Effects at the Diamond Storage Ring impedance, single-bunch, simulation, collective-effects 1574
 
  • R. Bartolini, C. Christou, R. T. Fielder, M. Jensen, A. F.D. Morgan, S. A. Pande, G. Rehm, C. A. Thomas
    Diamond, Oxfordshire
  The Diamond storage ring has achieved its nominal operating current of 300 mA in multi-bunch mode and up to 10 mA in single bunch mode. Several collective instabilities have been observed and their dependence on machine parameters such as chromaticities, RF voltage and fill pattern have been investigated. We report here the analysis of the observed current thresholds and rise times of the instabilities compared with analytical estimates and tracking simulations. We also present the results of the MAFIA simulations performed with the aim of understanding the main contribution to the impedance of the ring and establishing a machine impedance database.  
 
TUPP023 Direct Detection of the Electron Cloud at ANKA electron, vacuum, simulation, synchrotron 1580
 
  • S. Casalbuoni, A. W. Grau, M. Hagelstein, A.-S. Müller
    FZK, Karlsruhe
  • U. Iriso
    ALBA, Bellaterra
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
  Low energy electrons generated by the interaction of high energy particles with the beam pipe surface can be detrimental for accelerators performances increasing the vacuum pressure, the heat load and eventually producing beam instabilities. The low energy electrons accumulating in the beam pipe are often referred to as electron cloud. In this presentation we report on the direct evidence of the electron cloud in the electron storage ring of the synchrotron light source ANKA (ANgstrom source KArlsruhe).  
 
TUPP025 Preliminary Impedance Budget for the TPS Storage Ring impedance, single-bunch, vacuum, coupling 1586
 
  • A. Rusanov
    NSRRC, Hsinchu
  Taiwan Photon Source (TPS) is a new third generation low-emittance synchrotron storage ring which will be built at the present site of the NSRRC in Hsinchu, Taiwan. Preliminary results of the ongoing impedance studies of the TPS are presented in this paper. The overall impedance of the vacuum chamber has been evaluated with focus on the longitudinal broad-band impedance, which can lead to bunch lengthening and microwave instability. Wakepotentials and impedances produced by each component of the storage ring have been evaluated by using 3D electromagnetic code GdfidL. Then longitudinal loss factor, longitudinal broad-band impedance and transverse kick factors were computed. Results are summarized in the table. Numerically obtained data is compared to analytical results for simplified geometries of the vacuum chamber components.  
 
TUPP028 Bunch Length and Impedance Measurements at SPEAR3 impedance, single-bunch, lattice, coupling 1595
 
  • W. J. Corbett, W. X. Cheng, A. S. Fisher, X. Huang
    SLAC, Menlo Park, California
  A series of bunch length measurements have been made for different lattice configurations in SPEAR3 as a function of single-bunch current. The lattices include achromatic optics, low-emittance optics and short-bunch, low-momentum compaction optics (low-alpha). The streak-camera data clearly demonstrates effects of both resistive and reactive chamber impedance and shows levels of microwave instability threshold. In the low-alpha mode, signs of bunch length ‘bursting’ were observed. Fitted bunch-profile data, impedance calculations and bursting data are presented.  
 
TUPP037 Impedance and Instabilities for the ALBA Storage Ring impedance, damping, synchrotron, vacuum 1622
 
  • T. F. Günzel, F. Pérez
    ALBA, Bellaterra
  The geometrical impedance in all 3 planes for most of the vacuum chamber elements of the ALBA storage ring was computed with the 3D-solver GdfidL. Optimisation of some element geometries was carried out in order to reduce dissipative losses and in general the impedance. Resistive wall impedance was calculated analytically. The thresholds of various instabilities were determined on the basis of analytically formulated threshold criteria. The most important are a HOM-driven longitudinal multibunch instability and the transverse resistive wall instability. It is proposed to combat the first one by Landau damping using partial filling and the second one by a transverse feedback system.  
 
TUPP058 Impedance Estimation of Diamond Cavities impedance, simulation, vacuum, resonance 1673
 
  • S. A. Pande, R. T. Fielder, M. Jensen
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
  The RF straight section of the Diamond storage ring presently consist of two CESR type SCRF cavities with a provision to install a third cavity in the future. The cavities are equipped with HOM loads and are joined to the adjacent storage ring beam pipe using tapered transitions. The RF cavities are simulated with MAFIA, CST Studio and ABCI to estimate their contribution to the total ring impedance. We also measured the resonant frequencies and Q factors of residual HOMs in these cavities. In this paper, we present the results of our measurements and simulations which lead us to an estimation of the impedance of the RF straight.  
 
TUPP074 A New RF Shielded Bellows for the DAΦNE Upgrade shielding, impedance, coupling, simulation 1706
 
  • S. Tomassini, F. Marcellini, P. Raimondi, G. Sensolini
    INFN/LNF, Frascati (Roma)
  A new RF shielded bellows, using the technology of omega shaped strip of beryllium copper material, has been developed and tested on the DAΦNE Upgrade*. The RF omega shield is composed by many Be-Cu strips held by an external floating ring**. Thermal power loss on strips can be easily extracted and dissipated allowing high beam current operation. Leakage of beam induced e.m. fields through the RF shield is almost suppressed. Twenty omega bellows were manufactured and installed in the DAΦNE storage rings and showed good properties up to a stored beam current of 700 mA.

*DAΦNE upgrade: A New magnetic and mechanical layout. PAC07. pp. 1466-1468, Albuquerque.
**Design and E. M. Analysis of the New DAΦNE Interaction Region. PAC07, Albuquerque, pp 3988.

 
 
TUPP093 Crystalline Beam Simulations ion, coupling, simulation, laser 1747
 
  • D. A. Krestnikov
    JINR/DLNP, Dubna, Moscow region
  • M. Grieser
    MPI-K, Heidelberg
  • M. Ikegami
    JAEA/Kansai, Kizu-machi Souraku-gun Kyoto-fu
  • I. N. Meshkov, A. O. Sidorin, A. V. Smirnov, G. V. Trubnikov
    JINR, Dubna, Moscow Region
  • M. Nakao, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • K. Noda, T. Shirai
    NIRS, Chiba-shi
  A new program code was elaborated for the simulation of crystalline beams on the S-LSR storage ring (Kyoto Univ., Japan) under action of the cooling system. For the investigation of ordered proton beams, which recently were observed in first time on S-LSR, a special molecular dynamics technique was used. This article presents results of the numerical simulation and comparison with experimental data.  
 
TUPP160 Superconducting RF Activities at ACCEL Instruments controls, damping, cryogenics, superconducting-RF 1884
 
  • M. Pekeler, S. Bauer, P. vom Stein
    ACCEL, Bergisch Gladbach
  We report on highlights of SRF activities at ACCEL Instruments during the last few years. For example the development of a new hydrofloric and sulphoric acid free electropolishing method for niobium cavities and the construction and installation of a new standard electropolishing plant for 9-cell 1.3 GHz cavities. In addition we have further developed our design for 500 MHz superconducting RF modules for light sources and delivered three such accelerator modules for Shanghai Ligth Source. For SOLEIL we manufactured a 350 MHz twin cavity accelerator module using the technology of sputtering niobium onto copper.  
 
WEZG02 Commissioning of an Accelerator: Tools and Management controls, synchrotron, optics, diagnostics 1926
 
  • A. Nadji
    SOLEIL, Gif-sur-Yvette
  During the life of an accelerator project, the commissioning is a very important and exciting phase. It is preceded by a long period of design, calculations, magnetic measurements, installation, and alignment. We want the commissioning stage to be successful and fast; that is, attaining rapidly the set goals and make the machine available for impatient users. This paper summarizes the experience of several commissioning phases for different types of accelerators such as SNS, JPARC, and LHC, as well as synchrotron light sources such as DIAMOND, SOLEIL, and SSRF. The importance of preparation for commissioning on both technical and personnel levels will be covered. We will also talk about the concept of stages, anticipation of problems, and the early involvement of many specialists in addition to accelerator physicists and future accelerator operators. Furthermore, we will outline the importance of having a command control that is practical, fast, and has the capacity to offer high level automated applications. Finally, we will discuss the indispensable role of diagnostics for the first injection and first turns of the beam.  
slides icon Slides  
 
WEPC002 Analysis of Beam Orbit Stability and Ground Vibrations at the Diamond Storage Ring resonance, quadrupole, feedback, ground-motion 1980
 
  • R. Bartolini, H. C. Huang, J. Kay, I. P.S. Martin
    Diamond, Oxfordshire
  With the aim of understanding and improving the beam orbit stability at the Diamond storage ring we launched an extensive campaign of ground and magnets vibration measurements in order to identify the sources of ground vibration and how they affect the beam orbit stability through the girder resonances. We present here the results of the measurements performed during 2007 along with a discussion of the possible remedies and the implications for the orbit feedback systems.  
 
WEPC004 Design Status of the Taiwan Photon Source dynamic-aperture, booster, lattice, emittance 1986
 
  • C.-C. Kuo, H.-P. Chang, H. C. Chao, P. J. Chou, K. S. Liang, W. T. Liu, G.-H. Luo, A. Rusanov, H.-J. Tsai, J. W. Tsai
    NSRRC, Hsinchu
  We report updated design works for a new 3-3.3 GeV synchrotron light source called Taiwan Photon Source (TPS). The lattice type of the TPS is a 24-cell DBA structure and the circumference is 518.4 m. The injector booster will be housed in the same tunnel. We present the lattice design, the accelerator physics issues and its expected performances.  
 
WEPC007 Vacuum Performance of the Diamond Light Source In-vacuum Insertion Devices vacuum, target, ion, insertion 1995
 
  • M. P. Cox, S. Bryan, B. F. Macdonald, H. S. Shiers
    Diamond, Oxfordshire
  Diamond Light Source is the UK's new 3 GeV 3rd generation synchrotron light source with a 562 m circumference electron storage ring. At the start of user operations in January 2007, 5 in-vacuum undulators were in operation and a further 3 units have been installed subsequently. This paper describes the vacuum performance of these devices. 3 different mechanical configurations with different undulator canting angle and different pumping arrangements of the interconnecting vessels are installed. One configuration has non-evaporable getter (NEG) coated interconnecting vessels. Vacuum simulations were carried out on these configurations as part of the vacuum design process to predict their performance. Following final magnetic characterization, each of the devices was vacuum assembled and baked ex-situ for an extended period and then installed under dry nitrogen purge conditions, eliminating the need for a time-consuming in-situ bakeout in most cases. After a period of pump down and beam conditioning, the operating pressures in all the in-vacuum undulators were below the target specification and produced acceptably low Gas Bremsstrahlung radiation levels in the beamlines.  
 
WEPC008 Status of the SSRF Storage Ring feedback, site, superconducting-RF, vacuum 1998
 
  • Z. M. Dai, D. K. Liu, L. G. Liu, L. Yin, Z. T. Zhao
    SINAP, Shanghai
  The SSRF storage ring is composed of 20 DBA cells with energy of 3.5GeV and circumference of 432m. The installation of the SSRF storage ring was started on June 11, 2007, and finished in the beginning of Dec. 2007. The system tests of hardware and software for storage ring were completed in the middle of Dec. 2007. The commissioning of the storage ring started on Dec. 21, 2007, and the 100mA stored beam was achieved for the first time on Jan. 3, 2008. The design, installation and commissioning of the SSRF storage ring are described in this paper  
 
WEPC009 Progress of ALBA vacuum, linac, booster, quadrupole 2001
 
  • D. Einfeld
    ALBA, Bellaterra
  The construction of the ALBA Synchrotron Light Source in Barcelona (Spain) is well advanced. In spring of this year the 100 MeV Linac will be installed and results from the commissioning will be reported on this conference. The different components for the accelerators have successfully completed the prototyping phase and the different series are now under production. Installation of Booster and Storage Ring should start in summer of this year and commissioning is planned for spring 2009. The construction status will be presented.  
 
WEPC010 Upgrade of the ESRF Accelerator Complex undulator, insertion, insertion-device, lattice 2004
 
  • P. Elleaume, J. C. Biasci, J-F. B. Bouteille, J. M. Chaize, J. Chavanne, L. Farvacque, L. Goirand, M. Hahn, L. Hardy, J. Jacob, R. Kersevan, J. M. Koch, J. M. Mercier, A. Panzarella, C. Penel, T. P. Perron, E. Plouviez, E. Rabeuf, J.-L. Revol, A. Ropert, K. B. Scheidt, D. Schmied, V. Serriere
    ESRF, Grenoble
  The ESRF, the first third generation synchrotron radiation source, opened its first beamline in 1994 and has been continuously developed since then to satisfy the user community. However, the need arose to make a major upgrade of the infrastructure and accelerator complex in order to fulfil the request for new scientific applications*. The experimental Hall will be expanded and half of the beamlines reconstructed. The storage ring lattice will be modified to provide space for longer as well as a larger number of insertion devices. New insertion devices will be developed possibly based on in-vacuum permanent magnets at cryogenic temperature. The electron beam positioning system will be rebuilt to provide a higher photon beam stability. The RF system will face a major reconstruction with a new type of RF transmitters and HOM damped cavities allowing stable operation at a ring current of 300 mA without feedback. The injector system will be upgraded to operate the 16 and 4 bunch fillings in the top-up mode in order to increase the average current and obtain a higher photon beam stability.

*ESRF Science and Technology Programme, 2008-2017.

 
 
WEPC012 Commissioning and Operation of the Metrology Light Source (MLS) injection, accumulation, ion, electron 2010
 
  • J. Feikes, M. Abo-Bakr, K. B. Buerkmann-Gehrlein, M. V. Hartrott, J. Rahn, G. Wuestefeld
    BESSY GmbH, Berlin
  • R. Klein, G. Ulm
    PTB, Berlin
  The Metrology Light Source (MLS) is dedicated to metrological and technological developments in the UV and EUV spectral range and in the IR and THz region. The new electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) is located next to the BESSY II storage ring in Berlin - Adlershof. The MLS with its 48 m circumference can be operated at any electron beam energy between 105 MeV and 630 MeV. The electron beam currents vary from 1 pA (one stored electron) up to 200 mA. These specific modes of operation were achieved during the initial one year phase of the commissioning of the storage ring until April 2008, when the regular MLS user operation started. The basis for this success was the previously commissioned microtron which is the main part of the injection system.  
 
WEPC014 Beam Lifetime Studies of Hefei Advanced Light Source (HALS) Storage Ring coupling, emittance, lattice, scattering 2016
 
  • G. Feng, W. Li, L. Liu, L. Wang, C.-F. Wu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  Hefei Advanced Light Source (HALS) will be a high brightness light source with about 0.2nmrad emittance at 1.5GeV. Ultra low beam emittance and relatively low beam energy of HALS would result in poor beam lifetime. Comparing the beam-gas scattering and Touschek scattering effects, a conclusion can be drawn that Beam lifetime will be affected strongly by Touschek scattering. Touschek lifetime has been studied considering linear and nonlinear effects for the lattice structure. Relations between lifetime and RF cavity voltage, lifetime and emittance coupling, lifetime and gap heights of insertion devices have been calculated respectively. After the optimization, proper cavity voltage and emittance coupling are chosen to get about 1.06 hours of total lifetime including gas scattering losses effect. Installing a third harmonic RF cavity can lengthen the beam bunch to increase the total lifetime to about 3.85 hours. Top up injection operation will be applied to keep bunch current within the required value.  
 
WEPC022 Operation and Recent Developments at the ESRF feedback, undulator, lattice, cryogenics 2028
 
  • J.-L. Revol, J. C. Biasci, J-F. B. Bouteille, J. M. Chaize, J. Chavanne, P. Elleaume, L. Farvacque, G. Gautier, L. Goirand, M. Hahn, L. Hardy, J. Jacob, R. Kersevan, J. M. Koch, J. M. Mercier, I. Parat, C. Penel, T. P. Perron, E. Plouviez, A. Ropert, K. B. Scheidt, D. Schmied, V. Serriere
    ESRF, Grenoble
  The ESRF has been operating for a period close to fifteen years and is now looking towards an ambitious upgrade programme for the coming ten years. This paper reports on the performances achieved today with the ESRF storage ring, as well as developments accomplished and projects underway. These include a new filling mode for pump and probe experiments, the evolution of insertion devices, developments to improve beam stability, in particular transverse and longitudinal multibunch feedbacks, and the current increase from 200 to 300 mA. The upgrade of the lattice to accommodate longer straight sections and the new High Quality Power Supply system will also be presented. The machine reliability and the most important failures will be discussed. Finally, the use of an electronic logbook in routine operation will be presented, and the status on the control system including TANGO collaboration given.  
 
WEPC023 Ideas for a Future PEP Light Source brightness, undulator, emittance, photon 2031
 
  • R. O. Hettel, K. L.F. Bane, L. D. Bentson, K. J. Bertsche, S. M. Brennan, Y. Cai, A. Chao, S. DeBarger, V. A. Dolgashev, X. Huang, Z. Huang, D. Kharakh, Y. Nosochkov, T. Rabedeau, J. A. Safranek, J. Seeman, J. Stohr, G. V. Stupakov, S. G. Tantawi, L. Wang, M.-H. Wang, U. Wienands
    SLAC, Menlo Park, California
  • I. Lindau
    Stanford University, Stanford, Califormia
  • C. Pellegrini
    UCLA, Los Angeles, California
  With the termination of operation of the PEP-II storage rings for high energy physics at hand, and with the migration of accelerator operation at SLAC in general to photon science applications, a study of the potential conversion of the PEP-II to a future light source has been initiated. With a circumference of 2.2 km and the capability for high current operation, it is clear that operating a converted ring at medium energy (3-6 GeV) could offer very low emittance and an average brightness of order 1022, limited primarily by the power handling capacity of photon beam line optical components. Higher brightness in the soft X-ray regime might be reached with partial lasing in long undulators if the emittance is sufficiently low, and high peak brightness could be reached with seeded FEL emission. Advanced pulsed rf technology might be used to generate short bunches and fast switched polarization in soft X-ray rf undulators. An overview of the preliminary findings of the PEP Light Source study group will be presented, including lattice, X-ray source and beam line options.  
 
WEPC025 First 18 Months Operation of the Diamond Storage Ring RF System vacuum, controls, resonance, synchrotron 2037
 
  • M. Jensen, M. Maddock, P. J. Marten, S. A. Pande, S. Rains, A. F. Rankin, D. Spink, A. V. Watkins
    Diamond, Oxfordshire
  Since the Diamond Light Source became operational in January 2007, the storage ring RF system has operated for 5000 hours in 2007 and is scheduled to operate for 5350 hrs in 2008. This paper presents some of the key challenges of the storage ring RF system including reliability, performance observations and future improvements.  
 
WEPC029 Assessment of the Impact of External Stimuli on the Floor Stability of Diamond survey, damping, site, monitoring 2049
 
  • J. Kay, H. C. Huang
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
  Continuous vibration monitoring is carried out and the stability of the Diamond floor slab has been assessed with regard to how it has responded to various external stimuli. Data has been collected on weather conditions and comparison made at extremes with floor vibration. The impact of a high level walkway bridge on the hall floor has also been assessed and there was a unique opportunity for an operational facility to measure the vibration response during a complete power black-out. The impact of local construction work is also presented.  
 
WEPC030 Diamond Light Source: Moving from Commissioning to Full Machine Operation injection, feedback, single-bunch, controls 2052
 
  • V. C. Kempson
    Diamond, Oxfordshire
  Diamond Light Source commenced routine operations in January 2007 providing light to beam lines for 3000 hours in 2007 with 4000 hours planned during 2008. During shut down periods Insertion Devices and photon Beam Lines, to utilise them, are being installed at a rate of four per year. The evolution of the performance of the machine during this period is described, including beam current, vacuum levels, beam lifetime etc. Machine operational statistics are also presented including a detailed fault analysis. Efforts that have been made to improve reliability are also discussed. On behalf of the Diamond machine staff.  
 
WEPC032 Absolute Measurement of the MLS Storage Ring Parameters electron, photon, radiation, induction 2055
 
  • R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm
    PTB, Berlin
  • M. Abo-Bakr, K. B. Buerkmann-Gehrlein, J. Feikes, M. V. Hartrott, K. Holldack, J. Rahn, G. Wuestefeld
    BESSY GmbH, Berlin
  The Metrology Light Source (MLS), the new electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB) located next to BESSY II in Berlin - Adlershof is dedicated to metrology and technology development in the UV and EUV spectral range as well as in the IR and THz region. The MLS can be operated at various electron beam energies up to approx. 600 MeV and at electron beam currents varying from 1 pA (one stored electron) up to 200 mA and is optimized for the generation of coherent synchrotron radiation. Of special interest for PTB is the operation of the MLS as a primary radiation source standard from the visible up to the X-ray region. Therefore the MLS is equipped with all the instrumentation necessary to measure the storage ring parameters needed for the calculation of the spectral photon flux according to the Schwinger theory with low uncertainty. The instrumentation and measurement results for the determination of the storage ring parameters are presented.  
 
WEPC033 Coherent Synchrotron Radiation at the Metrology Light Source of the PTB radiation, electron, synchrotron, synchrotron-radiation 2058
 
  • R. Müller, A. Hoehl, R. Klein, G. Ulm
    PTB, Berlin
  • M. Abo-Bakr, K. B. Buerkmann-Gehrlein, J. Feikes, M. V. Hartrott, J. S. Lee, J. Rahn, U. Schade, G. Wuestefeld
    BESSY GmbH, Berlin
  The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up a low-energy electron storage ring in Berlin-Adlershof in close cooperation with the BESSY GmbH. The new storage ring, named Metrology Light Source (MLS), is mainly dedicated to metrology and technological developments in the EUV, VUV, and IR spectral range. Additionally, the MLS is the first machine designed and prepared for a special machine optics mode (low-alpha operation mode) based on an octupole correction scheme, for the production of coherent synchrotron radiation in the FIR and THz region. Two beamlines dedicated to the use of IR synchrotron radiation are now under commissioning: an IR bending magnet beamline optimized for the MIR to FIR and an IR edge radiation beamline. We report the status of the MLS operated in the low alpha mode and present first results from the commissioning.  
 
WEPC034 Present Status of Siam Photon Source undulator, photon, injection, synchrotron 2061
 
  • P. Klysubun, S. Cheedket, G. G. Hoyes, M. Oyamada, W. Pairsuwan, S. Rugmai, P. Sudmuang
    NSRC, Nakhon Ratchasima
  The Siam Photon Source (SPS) is a 1.2 GeV synchrotron light source situated in Nakhon Ratchasima, Thailand. It is currently in the fourth year of routine operation for synchrotron radiation users. In order to address the increasing user demand for increasing beamtime, better beam position stability, and improved machine reliability, several machine improvements and upgrades have been undertaken during the past year. This report first briefly gives the overview and important parameters of the light source, and then describes the current operation status and operation statistics in 2007. Recent machine improvements, for instance, modernization of injector components, improvement of vacuum system, recalibration of beam position monitors, and orbit correction, are presented together with the initial synopsis of the successful installation of the first insertion device, a permanent magnet planar undulator.  
 
WEPC037 Preparations of BESSY for Top Up Operation injection, synchrotron, kicker, septum 2067
 
  • P. Kuske, M. Abo-Bakr, W. Anders, T. Birke, K. B. Buerkmann-Gehrlein, M. Dirsat, O. Dressler, V. Duerr, F. Falkenstern, W. Gericke, R. Goergen, F. Hoffmann, T. Kamps, J. Kuszynski, I. Mueller, R. Mueller, K. Ott, J. Rahn, T. Schneegans, D. Schueler, T. Westphal, G. Wuestefeld
    BESSY GmbH, Berlin
  • D. Lipka
    DESY, Hamburg
  The synchrotron light source BESSY went into operation for users in 1998. BESSY was not designed initially to allow for Top Up operation, a mode where lost electrons are replaced after minutes while the beam shutters are open and users take data. Since 3 years the facility is improved in order to guarantee safe operation in this risky mode. The work culminated in a one week long Top Up test run at the beginning of this year. The efforts and achievements are described in detail: Improvements of the injector, the pulsed injection elements, the timing system, insertion devices, the additional safety interlocks, and the shielding of the ring.  
 
WEPC041 The Injection System of the SSRF Storage Ring injection, kicker, septum, multipole 2076
 
  • H. H. Li, B. C. Jiang, L. G. Liu, X. Y. Sun, Y. Xu, W. Zhang, X. M. Zhou
    SINAP, Shanghai
  A multi-turn injection scheme with four kickers and two septa is used for injection into SSRF storage ring. The 3.5GeV electron beam from the SSRF booster is injected with 6.3 degrees horizontally. All injection elements are set in one 12m long straight section for the requirement of the top-up operation. Simulation and commissioning results will be presented in this paper, such as the injection efficiency and the disturbance on stored beam.  
 
WEPC042 Commissioning of the SSRF Storage Ring closed-orbit, emittance, sextupole, optics 2079
 
  • L. G. Liu
    SSRF, Shanghai
  • Z. M. Dai, B. C. Jiang, H. H. Li, D. Wang, W. Zhang, Z. T. Zhao
    SINAP, Shanghai
  The Shanghai Synchrotron Radiation Facility (SSRF) is a 3.5GeV synchrotron radiation light source under commissioning in Shanghai, China. The SSRF accelerator complex consists of a 150MeV linac, full energy booster and a 3.5GeV storage ring. The commissioning of the SSRF storage ring began on Dec. 21st evening, 2007, the first turn and 150 turns was observed in less than 12 hours with RF off and then the stored beam of 5 mA was achieved on Dec. 24th. On Jan. 3rd, 2008, the 100mA stored beam current were obtained in the machine for the first time. Since then, the storage ring has been brought close to the design parameters, and frequent operation with 100mA beam current has been down for making the vacuum chamber cleaning. In this paper, commissioning results of the machine is presented.  
 
WEPC044 Top-Up Safety Simulations for the Diamond Storage Ring electron, sextupole, simulation, quadrupole 2085
 
  • I. P.S. Martin, C. P. Bailey, E. C. Longhi, R. P. Walker
    Diamond, Oxfordshire
  • R. Bartolini, I. P.S. Martin
    JAI, Oxford
  To ensure that it is not possible for a train of injected electron bunches to pass down an open beam-line during top-up operation at the Diamond Light Source, an extensive program of tracking studies has been performed. Various error scenarios have been investigated, with realistic magnetic field, trajectory, aperture and energy errors all taken into account. We describe the tracking methods used, scenarios considered and the interlocks required in order to maintain user safety during top-up operation.  
 
WEPC046 Characterizing THz Coherent Synchrotron Radiation at the ANKA Storage Ring radiation, synchrotron, synchrotron-radiation, single-bunch 2091
 
  • A.-S. Müller, I. Birkel, S. Casalbuoni, B. Gasharova, E. Huttel, Y.-L. Mathis, D. A. Moss, N. J. Smale, P. Wesolowski
    FZK, Karlsruhe
  • E. Bruendermann
    Ruhr-Universität Bochum, Bochum
  • T. Bueckle, M. Klein
    University of Karlsruhe, Karlsruhe
  In a synchrotron radiation source coherent infrared (IR) radiation is emitted when the bunch length is comparable to the wavelength of the emitted radiation. To generate coherent THz (far IR) radiation, the ANKA storage ring is operated regularly in a dedicated low-alpha optics. Different bunch lengths, corresponding to different spectral ranges of the THz spectrum and various electron beam energies can be offered, depending on user demand. The radiation emitted in the fringe field of a dipole magnet, the so-called edge radiation, is detected at the ANKA-IR beamline. This paper presents radiation properties like THz beam profiles and power measurements in the framework of characterising the coherent THz radiation to optimise the power, frequency and spatial output of the ANKA storage ring. First experiments showed a time averaged power of up to 0.2 mW suggesting a THz pulse peak power of at least several tens of mW.  
 
WEPC047 Modeling the Shape of Coherent THz Pulses Emitted by Short Bunches in an Electron Storage Ring radiation, synchrotron, synchrotron-radiation, electron 2094
 
  • A.-S. Müller, S. Casalbuoni, M. Fitterer, E. Huttel, Y.-L. Mathis
    FZK, Karlsruhe
  • M. T. Schmelling
    MPI-K, Heidelberg
  A sufficiently short electron bunch will emit coherent synchrotron radiation of wavelengths equal to or larger than the bunch length. The shape of the emitted THz pulse depends amongst other things on the original shape and length of the bunch’s charge distribution. A Michelson interferogram of the THz signal therefore contains information on the generating bunch. However, systematic effects make a bunch length measurement based on that technique non-trivial. In order to understand the variables involved, an analytical model of the pulse generation is needed. In this paper, a derivation of the THz pulse shape form first principles with special emphasis in the time domain is presented. The impact of charge distribution parameters on the Michelson interferogram is discussed.  
 
WEPC049 Novel Schemes for Simultaneously Satisfying High Flux and TOF Experiments in a Synchrotron Light Source kicker, synchrotron, radiation, single-bunch 2100
 
  • D. Robin, G. J. Portmann, F. Sannibale, W. Wan
    LBNL, Berkeley, California
  Storage Ring Light Sources have proven to be extremeley succesful tools for probing matter. One of their most desirable features is that they are able to supply synchrotron radiation to multiple experiments simultaneously. However two classes of applications are difficult to satisfy simultaneously - high flux applications and time of flight applications. High flux experiments require filling as many buckets as possible while time of flight experiments require long gaps between bunches. In this paper we examine schemes for operating the synchrotron light source for for both communities simultaneously.  
 
WEPC055 General Status of SESAME microtron, controls, booster, power-supply 2115
 
  • H. Tarawneh, T. H. Abu-Hanieh, A. Al-Adwan, M. A. Al-najdawi, A. Amro, M. Attal, D. S. Foudeh, A. Kaftoosian, T. A. Khan, F. Makahleh, S. A. Matalgah, A. M. Mosa Hamad, M. M. Shehab, S. Varnasseri
    SESAME, Amman
  • A. Nadji
    SOLEIL, Gif-sur-Yvette
  An update of the status of SESAME is presented. SESAME is a third generation light source facility under construction in Allan, Jordan. The storage ring electron beam energy is 2.5 GeV, the beam emittance is 26 nm.rad and 12 straight sections are available for Insertion Devices. The injector consists of a 22.5 MeV microtron and 800 MeV booster synchrotron, with a repetition rate of 1 Hz. The SESAME building has been handed over on Dec. 2007 and this note focuses on the upgrade and installation plans for the SESAME injector system during the 2008. In the meantime, preparations of technical specifications for most of the storage ring subsystems are in progress. In this note the conceptual design of the storage ring’s bending magnet, pulsed magnets and their power supplies, RF system, shielding wall and the cooling system are presented. The tendering of these components is expected by mid 2008.  
 
WEPC057 Preparation for Top-up Operation at Diamond radiation, injection, controls, dipole 2121
 
  • R. P. Walker, P. T. Bonner, F. Burge, Y. S. Chernousko, C. Christou, J. A. Dobbing, M. T. Heron, V. C. Kempson, I. P.S. Martin, G. Rehm, R. J. Rushton, S. J. Singleton, M. C. Wilson
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
  We report on progress towards top-up operation of Diamond. We describe the extensive safety assessment that has carried out, including the measurements and simulations to assess the potential radiation doses in the case of poor injection efficiency or a top-up "accident", and the various levels of safety measures - procedures, software limits and personnel safety system interlocks - that have been implemented. We describe the top-up control algorithm, the technique used to maintain a given arbitrary filling pattern and the performance in practise. The work carried out to reduce the effect of the injection kickers on the stored beam is described, and the effect of the residual disturbance on user operation is discussed. The modifications to the timing system to provide hardware and software gating signals, and experience with the use of these, are also described.  
 
WEPC062 The SRS at Daresbury Laboratory: a Eulogy to the World's First Dedicated High-energy Synchrotron Radiation Source synchrotron, lattice, wiggler, electron 2133
 
  • D. J. Holder, N. G. Wyles
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. D. Quinn
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  2008 marks the last year of operation of the Synchrotron Radiation Source (SRS) at Daresbury Laboratory, which circulated its first 2 GeV beam in 1981. This paper provides a look back at the significant milestones passed on the way and records the achievements of many of those involved in its thirty-year programme. Many of the technologies and techniques developed at the SRS at Daresbury are now standard practice at synchrotron light sources around the world; and there are few light source laboratories that do not benefit from the skills of someone who spent their formative years working on the SRS. The provision of synchrotron light for the UK is now being met by DIAMOND, whose success is a testament to the skills of its designers, honed as they were on the SRS at Daresbury. These skills are now being used to design the UK’s next-generation light source, to provide the pulsed and longer-wavelength light that DIAMOND cannot.  
 
WEPC063 The Concept of Hefei Advanced Light Source (HALS) emittance, radiation, synchrotron, synchrotron-radiation 2136
 
  • L. Wang, G. Feng, W. Li, L. Liu, C.-F. Wu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  The Hefei Light Source is a dedicated VUV and soft X-ray light source. The layout of magnet lattice limits the achievalbe beam emittance and available straight section for insertion device. To enhance competitiveness of National Synchrotron Radiation Laboratory in synchrotron radiation application research region, a concept of new dedicated VUV and soft X-ray synchrotron radiation light source was put forward, which is named Hefei Advanced Light Source. Comparing the advantages, difficulties and performance/foundation of energy recovery linac, linac-based free electron laser and storage ring based light source, the scheme of a 1.5GeV storage ring with very low beam emittance was adopted as the baseline design. At same time, a low emittance 1.5 GeV linac would be as its full-energy injector, which can provide ultra-short radiation pulse. The HALS would provide more brilliant and transverse coherent synchrotron radiation in the VUV and soft X-ray range to various users.  
 
WEPC064 The Possibility of Conversion of Hefei Light Source Storage Ring Into a Dedicated THz Radiation Source radiation, synchrotron, synchrotron-radiation, collective-effects 2139
 
  • L. Wang, G. Feng, W. Li, L. Liu, C.-F. Wu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  In the future of National Synchrotron Radiation Laboratory, a new advanced VUV and soft X-ray light source would be contructed and provide synchrotron radiation with high brilliance and transverse coherence. At that time, the current HLS storage ring would be replaced by the new one. Instead of retire of the old ring, there is another case, that is upgrading current low energy storage ring as a dedicated THz light source. In this paper, the possibility of lattice upgrading were evaluated. And its performance was estimated according to exist theoretical model.  
 
WEPC066 The Transport Line Upgrade Proposal of Hefei Light Source quadrupole, injection, dipole, coupling 2145
 
  • L. Wang, G. Feng, W.-W. Gao, W. Li, L. Liu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  The injector of Hefei Light Source is a 200 MeV linac. A 55m transport line transfer beam to injection point of storage ring. At current stage, the mismatch of phase space is a potential source limiting the injection efficiency and stable operation of light source. A new focusing configuration of transport line was put forward, where the Twiss parameters matching was implemented. A skew quadrupole was introduced to make horizontal dispersion function matching. This matching between transport line and storage ring would be helpful to improve injection efficiency of HLS storage ring.  
 
WEPC068 Injection into the ALBA Storage Ring injection, septum, kicker, booster 2151
 
  • G. Benedetti, D. Einfeld, M. Munoz, M. Pont
    ALBA, Bellaterra
  • E. Huttel
    FZK, Karlsruhe
  Injection into the ALBA Storage Ring is performed at an energy of 3 GeV in a 7 m long straight section. The injection bump is performed with four kickers. Pulsed magnets are described, in particular the active septum magnet. Tracking of particles has been simulated over a large number of turns, taking into account the magnet errors, the sextupole fields and the physical apertures all along the machine. Specific requirements for top-up injection have been examined, such as a perfect closure of the injection bump, the residual vertical field and the leakage fields from the septum.  
 
WEPC070 Further Optimisation of the Diamond Light Source Injector booster, injection, linac, klystron 2157
 
  • C. Christou, J. A. Dobbing, V. C. Kempson, A. F.D. Morgan, B. Singh, S. J. Singleton
    Diamond, Oxfordshire
  The Diamond Light Source injector consists of a 100MeV linac and a 3GeV full-energy booster, and has been providing beam to the storage ring since September 2006. System optimisation has continued throughout the first year of user operation at Diamond. Beam losses on injection into both the booster and storage ring have been minimised by optimisation of operating parameters and the stabilisation of injection elements, particularly the elimination of a linac energy beat. High level software has been developed to monitor turn-by-turn BPM data, allowing booster chromaticity to be measured. The same software generates an automatic log of storage ring frequency spectra on injection, enabling the parasitic measurement of storage ring tune, and can be used to provide information on storage ring impedance and chromaticity. Further optimisation of single bunch injection has been carried out in preparation for top-up operation, and top-up capability has been extended to provide a single bunch filling mode for the storage ring. Injection into the booster at low energy has been demonstrated, providing a mode of operation for the injection system in the event of a linac klystron failure.  
 
WEPC077 Pulsed Magnet Systems for the SSRF Injection and Extraction kicker, injection, extraction, septum 2175
 
  • M. G. Gu, Z. H. Chen, B. Liu, L. Ouyang, R. Wang, Y. Wu, Q. Yuan
    SINAP, Shanghai
  The injector and the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) have been built and the commissioning procedure and results are satisfactory. Total of fourteen pulsed magnets are used for the SSRF injection and extraction. In-vacuum ferrite kicker magnets, eddy current septa and 200ms bump magnets are offered for booster injection and extraction. A symmetric bump of stored beam is performed in one of the long straight section of the SSRF storage ring. Four identical kickers with ceramic vacuum chamber and two septa with a sheet of magnetic screening material around the stored beam are equipped for the storage ring injection. The septa can reach maximum 900 Tm field at 8600A with less than 0.01% leakage field for stored beam. And the identical 3.8 us half-sine pulse waveform is excited on the kicker magnets with 3.6kA current and exacted timing. The stability of ±0.05% (rms), low leakage field and identical bump are emphasized so that the residual closed orbit disturbance can be minimized for top-up injection.  
 
WEPC078 Eddy Current Septum Magnets for Booster Injection and Extraction and Storage Ring Injection at SSRF septum, injection, booster, vacuum 2177
 
  • M. G. Gu, R. Chen, Z. H. Chen, B. Liu, L. Ouyang
    SINAP, Shanghai
  There are 6 in-vacuum eddy current septum magnets used for injection and extraction in the SSRF booster and storage ring. The booster extraction thick septum magnets generate magnetic field over 1 Tesla, special attentions were paid to coils and their support design because of the shock force and the high heat which is hard to be dissipated in vacuum environment. The good transverse homogeneity in the gap has been achieved by careful design, precise machining and accurate assembly. An extremely low leakage field on the stored beam is another key feature of these magnets thanks to the high permeability Mu metal. Magnetic field measurement was conducted with both point coil and long integral coil, and the results agreed well with the OPERA-2d/3d simulations. An inner tube with RF finger flanges at each end is added to keep the continuity of impedance for the circulating beam. There is no vacuum separation between the inner tube and magnet chamber.  
 
WEPC079 Elettra Booster Commissioning and Operation booster, injection, optics, emittance 2180
 
  • F. Iazzourene
    ELETTRA, Basovizza, Trieste
  The new injector, consisting of a 100MeV linac and a 2.5GeV booster synchrotron, replaced the old limited energy 1.2GeV linac by the end of 2007*. The paper reports on its commissioning phases and results together with its present status of operation.

*"Overview of the Status of the Elettra Booster Project", WEPC090, these proceedings.

 
 
WEPC081 Improvement on Pulsed Magnetic Systems at SOLEIL kicker, injection, vacuum, pulsed-power 2183
 
  • P. Lebasque, R. Ben El Fekih, M. Bol, J.-P. Lavieville, A. Loulergue, D. Muller
    SOLEIL, Gif-sur-Yvette
  Two "machine study" kicker systems have been designed, built and installed on the storage ring of SOLEIL to kick the stored beam in the horizontal and the vertical planes, in order to investigate the non-linear dynamic of the ring with different insertion devices configurations. This article will describe the different aspects of the design of the two magnets and vacuum chambers, and of their fast high current pulsed power supplies, working with high voltage switches based on MOS transistors. The electrical and magnetic measurements will be presented. The second part of the paper will describe the modifications brought to the thick septum magnet system of the ring injection, in view to reduce the stray field seen by the stored beam. It also presents the different tunings performed on the four injection kickers, in order to reduce the amplitude of the residual bump along the ring down to a very low level. Theses adjustements are aimed to minimize the disturbances on the stored beam when operating the Synchrotron in "Top Up" injection mode.  
 
WEPC089 Status of the NSLS-II Injection System Design injection, booster, linac, lattice 2198
 
  • T. V. Shaftan, A. Blednykh, G. Ganetis, W. Guo, R. Heese, H.-C. Hseuh, E. D. Johnson, S. Krinsky, Y. J. Li, R. Meier, S. Ozaki, I. Pinayev, M. Rehak, J. Rose, S. Sharma, O. Singh, J. Skaritka, N. Tsoupas, F. J. Willeke, L.-H. Yu
    BNL, Upton, New York
  NSLS-II is a new ultra-bright 3rd generation 3GeV light source planned to be built at Brookhaven National Laboratory. The design of this facility is well under way. The requirement for the compact injector complex which has to continuously provide 3GeV electrons for top off injection into the storage ring is very demanding: high reliability, low loss, relatively high charge (10nC). The injector consists of linear accelerator, a full-energy booster, as well as transport lines and injection straight section. A large three dimensional dynamic aperture through the entire acceleration cycle in the booster synchrotron is required. Tolerances on pulsed magnets for the beam transfer are very tight in order to minimize injection losses and disturbance of the stored beam in the main ring. The components of the injector are optimized for high reliability and availability. In this paper we give an overview of the NSLS-II injector, discuss status, specifications and design challenges.  
 
WEPC090 Overview of the Status of the Elettra Booster Project booster, linac, injection, extraction 2201
 
  • M. Svandrlik
    ELETTRA, Basovizza, Trieste
  The Elettra Booster Project is in its final phase. The 100 MeV linac pre-injector and the 2.5 GeV booster were constructed and installed on schedule and within the foreseen budget. Elettra was shut down during the last autumn to switch from the old linac injector to the new booster. The new 2.5 GeV transfer line was successfully connected to the storage ring by December 2007. During the same period the booster commissioning was started. Operation for users of the light source, with the booster as injector, is scheduled in March 2008. An overview of the booster systems and of the current status of its commissioning and operation is presented and discussed here.  
 
WEPC091 Beam Injection by Use of a Pulsed Sextupole Magnet at the Photon Factory Storage Ring injection, sextupole, pulsed-power, power-supply 2204
 
  • H. Takaki, N. Nakamura
    ISSP/SRL, Chiba
  • K. Harada, T. Honda, Y. Kobayashi, T. Miyajima, S. Nagahashi, T. Obina, A. Ueda
    KEK, Ibaraki
  We will install a pulsed sextupole magnet (PSM) in order to test a new injection system for the top-up injection at the Photon Factory storage ring (PF ring) in the spring of 2008. A parabolic magnetic field of the PSM can give an effective kick to the injected beam that passes a distant region from the field center. And there is little modulation of the orbit of the stored beam because it passes around the center of the PSM. To achieve the beam injection at the PF ring, the PSM has a length of 0.3m, a magnetic field of 400 Gauss at a peak current of 3000A and a pulse width of 2.4μsec in a half-sine form. We already made the PSM and measured the magnetic field. We will report the result of the PSM beam injection at the PF ring.  
 
WEPC103 Design of a Cold Vacuum Chamber for Diagnostics electron, vacuum, synchrotron, diagnostics 2240
 
  • S. Casalbuoni, T. Baumbach, A. W. Grau, M. Hagelstein, R. Rossmanith
    FZK, Karlsruhe
  • V. Baglin, B. Jenninger
    CERN, Geneva
  • R. Cimino
    INFN/LNF, Frascati (Roma)
  • M. P. Cox
    Diamond, Oxfordshire
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • E. J. Wallén
    MAX-lab, Lund
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
  Preliminary studies performed with the cold bore superconducting undulator installed in the ANKA storage ring suggest that the beam heat load is mainly due to the electron wall bombardment. Low energy electrons (few eV) are accelerated by the electric field of the beam to the wall of the vacuum chamber, induce non-thermal outgassing from the cryogenic surface and heat the undulator. In this contribution we report on the design of a cold vacuum chamber for diagnostics to be installed in the ANKA (ANgstrom source KArlsruhe) storage ring and possibly in third generation light sources. The diagnostics implemented are:
  1. retarding field analyzers to measure the electron energy and flux,
  2. temperature sensors to measure the total heat load,
  3. pressure gauges,
  4. and a mass spectrometer to measure the gas content.
The aim of this device is to gain a deeper understanding on the heat load mechanisms to a cold vacuum chamber in a storage ring and find effective remedies. The outcome of the study is of relevance for the design and operation of cold bore superconducting insertion devices in synchrotron light sources.
 
 
WEPC107 Observation and Interpretation of Dynamic Focusing Effects Introduced by APPLE-II Undulators on Electron Beam at SOLEIL undulator, electron, focusing, betatron 2249
 
  • O. V. Chubar, P. Brunelle, M.-E. Couprie, J.-M. Filhol, A. Nadji, L. S. Nadolski
    SOLEIL, Gif-sur-Yvette
  The paper presents the results of electron beam closed orbit distortion (COD) and tune shift measurements performed on three different APPLE-II type undulators when making horizontal displacements of the electron beam orbit in those straight sections of the SOLEIL storage ring where these undulators are installed. In agreement with data from other storage rings, our results show that, when APPLE-II undulators are used in elliptical, linear-vertical or linear-tilted polarization modes, the measured tune shifts and the COD can not be explained only by residual first-order focusing effects: taking into account the second-order, or dynamic focusing effects, is necessary. We describe a COD interpretation method allowing for straightforward comparison of the measured effects on electron beam with the corresponding predictions from calculations and magnetic measurements. The observed dynamic effects are in good agreement with calculations performed using RADIA code. We also discuss possible modification of the figures of merit to be used at computer-aided shimming of APPLE-II undulators, which would allow for simultaneous minimization of the first- and second-order focusing effects.  
 
WEPC113 Heat Load Issues of Superconducting Undulator Operated at TPS Storage Ring radiation, undulator, synchrotron, synchrotron-radiation 2267
 
  • C.-S. Hwang, J. C. Jan, P. H. Lin
    NSRRC, Hsinchu
  The superconducting undulator with periodic length of 1.5 cm and magnet gap of 5.6 mm has been studied. The magnetic flux density of 1.4 T has been achieved. However, the heat loads from image current of the electron in the storage ring and the synchrotron radiation from bending magnet are the critical issues. The calculated power from the image current and the synchrotron radiation of bending magnet are about 3.5 W/m and 1.7 W, respectively. The superconducting undulator will be operated at the 3 GeV TPS storage ring that the operation current and the magnet flux density of dipole magnet is 400 mA and 1.19 T, respectively. The superconducting RF cavity will be installed in the TPS such that the bunch length is only 2.8 mm. Hence, the superconducting Landau cavity is necessary to extend the bunch length for reducing the heat load on the beam duct. In addition, some strategies are needed to be studied to avoid the synchrotron radiation heating on the 4.2 K vacuum chamber. The soft-end dipole design and the chicane mechanism are studied to solve the issue herein.  
 
WEPC114 Improved Winding of Superconducting Undulator and Measurement of Quenching Tolerance radiation, undulator, synchrotron, synchrotron-radiation 2270
 
  • J. C. Jan, C.-H. Chang, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
  The superconducting (SC) wire windings of the mini-pole superconducting undulator at National Synchrotron Radiation Research Center (NSRRC) have an improved performance. A precise measurement of the magnetic field was undertaken to examine the quality of the wire winding. We improved the insulation between wires and the iron pole to avoid SC wire degradation when the coil was trained up to high current. A Teflon coating (layer thickness 0.035-0.045 mm) on the iron pole is capable of providing insulation to 0.5 kV. We pasted extra Teflon tape (thickness 0.12 mm) on the coating layer; this Teflon tape serves as a buffer that avoids the SC wires scraping the Teflon coating layer during adjustment of the position of the SC wire during winding. A quenching experiment was also performed to detect the heat tolerance of the SC wires during extra heating of the beam duct; a heating tape (Ni80Cr20) simulated the heating of the beam duct by synchrotron radiation. The SC wires and heater are separated by the stainless steel (SS) beam duct (thickness 0.3 mm) and an epoxy layer (thickness 0.1 mm). This result is an important issue in cryostat design.  
 
WEPC132 Damping Wigglers at the PETRA III Light Source wiggler, damping, permanent-magnet, emittance 2317
 
  • M. Tischer, K. Balewski
    DESY, Hamburg
  • A. M. Batrakov, I. V. Ilyin, D. Shichkov, A. V. Utkin, P. V. Vagin, P. Vobly
    BINP SB RAS, Novosibirsk
  We report on the progress in construction of the PETRA III damping sections. A series of 10 permanent magnet wigglers followed by SR-absorbers will be installed in each of the two damping sections. Thereby, the emittance of the 6 GeV storage ring will be reduced down to 1 nmrad. Prototypes of all major components have meanwhile been characterized and a test assembly of one complete wiggler cell has been performed successfully. The wigglers have a period length of 200 mm and provide a peak field of 1.5 T. Most of the 4 m long devices have been fabricated and assembled. We present results of magnetic measurements and tuning.  
 
WEPC136 Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings undulator, radiation, electron, polarization 2326
 
  • M. Yeddulla, H. G. Geng, Z. Huang, Z. Ma, S. G. Tantawi
    SLAC, Menlo Park, California
  RF undulators, suggested long time ago, has the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. Here we present various waveguide structures such as smooth walled and corrugated walled waveguides and various RF modes. We will show that there are some advantages in operating with higher order modes and also with hybrid modes in the corrugated guide. We will show that the RF power requirement for some of these modes will permit a quasi CW operation of the undulator, thus permitting its operation in a storage ring.  
 
WEPC142 Design of Pulsed Magnets for the Taiwan Photon Source septum, kicker, vacuum, injection 2341
 
  • C.-H. Chang, C. K. Chan, J.-R. Chen, C.-S. Fann, M.-H. Huang, C.-S. Hwang, F.-Y. Lin, Y.-H. Liu, C.-S. Yang
    NSRRC, Hsinchu
  A new Taiwan Photon source requires a high stability pulsed magnets for the top-up mode injection operation. We present a preliminary design of the pulsed magnets used for injection into the 3 GeV storage ring. A 0.6 m long kicker magnet prototype is fabricated for testing the field performance. The field testing results are described in this work. The septum magnet with a 0.4 mm thickness stainless steel vacuum chamber is real tested at 3 Hz operation. The field performance, the stray fields and the eddy current effect are presented in this paper.  
 
WEPC165 Magnetic Measurements of the SSRF Storage Ring Magnets quadrupole, sextupole, multipole, dipole 2395
 
  • J. D. Zhang, Q. G. Zhou
    SINAP, Shanghai
  The SSRF storage ring comprises a total of 460 magnets which has four types and eight different effective magnetic lengths. The magnetic measurements of all the production magnets including 40 bending magnets with a maximum field of 1.2726 T, 200 quadrupoles divided in Three families with a maximum gradient of 20 T/m, 140 sextupoles with a maximum second order differential of 460 T/m, and 80 correctors with a maximum kick capability of 1.2 mrad. For the dipoles a long coil system has been used to measure the magnetic field while for the quadrupoles and sextupoles a rotating coil system has been used to determine the magnitude of the high order multipoles. In this paper the analysis of these data is discussed and results for measured magnets are presented.  
 
WEPD011 Development Work for a Short Curved Superconducting Dipole Magnet for the HESR at FAIR dipole, antiproton, synchrotron, lattice 2425
 
  • F. M. Esser, R. Greven, G. Hansen, F. Klehr, J. Schillings, H. Soltner, R. Tölle
    FZJ, Jülich
  Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the High-Energy Storage Ring (HESR) going to be part of the FAIR project at GSI. Within these activities a design for a short cosine-theta superconducting dipole has been carried out together with industry partners. Its length will be approximately one third of the original HESR dipole whereas all other design parameter will be the same. The main design criterion is the short bending radius of 15.3 m of the magnet implying that the coil itself has a curved shape. Beside the geometrical design of the cold mass, this paper will focus particularly on the finite element calculations from the assembly through the cool down to the operating temperature of the magnet. First manufacturing tests as well as a status report on the achievements so far will be presented and future plans will be discussed.  
 
WEPD041 Continuous Operation of Cryogenic System for Synchrotron Light Source cryogenics, controls, superconducting-magnet, synchrotron 2503
 
  • F. Z. Hsiao, S.-H. Chang, W.-S. Chiou, H. C. Li, H. H. Tsai
    NSRRC, Hsinchu
  The availability of user time is an important index for the performance evaluation of a synchrotron light source. In NSRRC two cryogenic plants are installed for liquid helium supply to the superconducting magnets and the superconducting cavity of the electron storage ring. As a subsystem of the storage ring, the objective of continuous helium supply without interruption is important for the cryogenic plant. The target to shorten the recovery time of the storage ring, if the cryogenic plant trips, is another issue. Component failure and system maintenance are two main reasons interrupting operation of the cryogenic plant. This paper shows our strategy on the scheduled maintenance of either the cryogenic plant or the utility system to keep continuous liquid helium supply. Two tests to shorten the recovery time are presented: the first is liquid helium supply from both cryogenic plants simultaneously; the second is restarting the on-duty cryogenic plant with the other dewar providing helium to the superconducting devices.  
 
WEPP116 Muon Decay Ring Study emittance, closed-orbit, dynamic-aperture, quadrupole 2770
 
  • D. J. Kelliher, S. Machida, C. R. Prior, G. H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • F. Meot
    CEA, Gif-sur-Yvette
  Three different muon decay ring configurations are being considered for a neutrino factory. A racetrack design is the current ISS baseline (as it allows greater flexibility in the choice of detector sites) but triangular and bow-tie rings have advantages in neutrino production rates*. Using tracking code simulations, a study of the latter two designs is carried out. Since spin depolarisation measurements have been proposed for muon energy calibration**, spin tracking is included in this study. Dynamic aperture is important and is also calculated.

*International Scoping Study report, 2006.
**A Blondel et al. (editors), ECFA/CERN studies of a European Neutrino Factory Complex, CERN-2004-002 and EFCA/04/230, 13 April, 2004.

 
 
THPC005 Conceptual Design of Booster Synchrotron forTPS booster, emittance, lattice, quadrupole 2981
 
  • H. C. Chao, H.-P. Chang, P. J. Chou, C.-C. Kuo, G.-H. Luo, H.-J. Tsai, J. W. Tsai
    NSRRC, Hsinchu
  A six-folded concentric booster of 489.6 m with non-dispersive straights of length 5.8 m is designed for TPS storage ring of 518.4 m. The structure consists of modified FODO lattice with defocusing quadrupole fields built in bending magnets. The designed emittance is less than 10 nm-rad at 3 GeV. In this paper, the phenomenon during the ramping from 150 MeV to 3.0 GeV including the eddy current effect, the evolutions of beam emittance, energy spread, and bucket acceptance, will be discussed. In addition, closed orbit correction scheme, aperture request as well as injection and extraction schemes are described.  
 
THPC024 Closed Orbit Correction at the LNLS UVX Storage Ring coupling, sextupole, optics, feedback 3029
 
  • L. Liu, R. H.A. Farias, X. R. Resende, P. F. Tavares
    LNLS, Campinas
  The orbit correction of stored electrons in the LNLS storage ring often needs a few iterations to converge to the smallest distortion. This is caused in part by the residual coupling between transverse planes. This coupling effect can be included in the correction algorithm leading to the best orbit in just one iteration. However, in the LNLS ring, the number of monitors equals the number of vertical correctors but surpasses the number of horizontal correctors. This means that the vertical orbit can be corrected to zero at the position monitors in the decoupled situation but the horizontal orbit cannot. For the coupled case, the incapacity of zeroing the horizontal orbit leaks into the vertical plane. This problem can be addressed by the eigenvector method with constraints.  
 
THPC025 Further Advances in Understanding and Optimising Beam Dynamics in the Diamond Storage Ring dynamic-aperture, quadrupole, lattice, coupling 3032
 
  • I. P.S. Martin, R. T. Fielder, E. C. Longhi, B. Singh
    Diamond, Oxfordshire
  • R. Bartolini
    JAI, Oxford
  We report the results of recent beam dynamics studies of the Diamond storage ring. These studies were aimed at both improving our understanding of the machine operation as well as establishing a reliable, well corrected lattice with long lifetime and high injection efficiency suitable for later top-up operation. Particular attention has been given to measuring and controlling the linear optics of the lattice, to determining the various contributions to the overall beam lifetime and to optimising the sextupole strengths for good on and off momentum dynamic aperture. For each topic, detailed comparisons with model predictions are also described.  
 
THPC026 Measurement of Complex Coupling Driving Term of Linear Difference Resonance Using Turn-by-turn Beam Position Monitors coupling, betatron, quadrupole, resonance 3035
 
  • M. Masaki, K. Soutome, S. Takano, M. Takao
    JASRI/SPring-8, Hyogo-ken
  X-Y emittance coupling is one of the important measures of beam quality in an electron storage ring for high brilliant light source. We have developed a method of measuring complex coupling driving term C of linear difference resonance using turn-by-turn beam position monitors (BPMs), assuming the perturbation theory with the single resonance approximation. Since both amplitude and phase of the driving term are derived, we can uniquely determine the strength of two-degree-of-freedom skew quadrupole magnets for correction of the linear resonance coupling. Before the correction, the driving term was measured by the developed method at the SPring-8 storage ring where small skew quadrupole components are distributed as error magnetic fields. On the other hand, the linear resonance coupling was corrected using the counter skew quadrupole magnets, the strength of which was adjusted to minimize vertical beam size near the linear difference resonance. The measured driving term C was broadly consistent with the counter term calculated from the adjusted strength of skew quadrupole magnets for the coupling correction.  
 
THPC033 Global Optimization of the Magnetic Lattice Using Genetic Algoritihms lattice, emittance, quadrupole, insertion 3050
 
  • D. Robin, F. Sannibale, C. Steier, W. Wan, L. Yang
    LBNL, Berkeley, California
  The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straight forward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. In this paper we employ a technique we call GLASS (GLobal scan of All Stable Settings) that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is very fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices - the triple bend achromat of the ALS and the double bend achromat of CAMD. We extend the analysis to more complex lattices using multiobjective evolutionary analysis.  
 
THPC044 Accurate Calculation of Higher Order Momentum Compaction Factor in a Small Ring sextupole, radiation, synchrotron, synchrotron-radiation 3074
 
  • L. Wang, G. Feng, W. Li, L. Liu, C.-F. Wu, H. Xu, S. C. Zhang
    USTC/NSRL, Hefei, Anhui
  The key issues to obtain short beam bunch in storage ring is to lowering momentum compaction factor. When the linear momentum compaction factor is small, higher order momentum compaction factor can produce significant effects in the longitudinal beam dynamics. In the small storage ring, higher order momentum comaction factor is determined not only by sextupoles, and also by the fringe field of main magnets. In this paper, the higher order momentum factor formula including the effects of fringe field is deduced. As a example, the momentum compaction factor of HLS storage ring was calculated.  
 
THPC046 Heating Rate of Highly Space-charge-dominated Ion Beams in a Storage Ring emittance, lattice, simulation, ion 3080
 
  • Y. Yuri
    JAEA/ARTC, Takasaki
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  We investigate the heating process of highly space-charge-dominated ion beams in a storage ring, using the molecular dynamics simulation technique. To evaluate the heating rate over the whole temperature range, we start from an ultra-low-emittance state where the beam is Coulomb crystallized, apply perturbation to it, and follow the emittance evolution. When the ring lattice is properly designed, the heating rate is quite low at ultralow temperature because random Coulomb collisions are suppressed*. It gradually increases after the ordered state is destroyed by perturbation, and comes to a peak when the beam reaches a liquid phase. The dependence of the heating behavior on the beam line density and betatron tune is explored systematically. The effect of lattice imperfection on the stability of crystalline beams is also confirmed.

*J. Wei and A. M. Sessler, EPAC'96, p.1179.

 
 
THPC053 Turn-by-turn Data Analysis at the Diamond Storage Ring betatron, optics, resonance, quadrupole 3101
 
  • R. Bartolini, I. P.S. Martin, G. Rehm, J. Rowland
    Diamond, Oxfordshire
  The Diamond Storage Ring has been recently equipped with a set of two pinger magnets that can excite betatron oscillations to large amplitudes in both planes of motion. In conjunction with the turn-by-turn capabilities available at all BPMs, the system provides a powerful diagnostic tools for the characterisation of the linear and non-linear beam dynamics of the electron beam in the storage ring. We report the first results on the application of the Frequency Map Analysis and the measurement of the resonant driving terms at the Diamond Storage Ring.  
 
THPC058 High Order Super-periodic Structural Resonances resonance, lattice, synchrotron, synchrotron-radiation 3116
 
  • Y. Jiao, S. X. Fang, J. Q. Wang
    IHEP Beijing, Beijing
  High order super-periodic structural resonances, which arise from the study of SSRF lattice optimization, are found to have large effects on beam dynamics. The mechanism and feature of this kind of resonances are described in the text. The limit to beam dynamics of other light sources are also found from these resonances.  
 
THPC064 Use of LOCO at Synchrotron SOLEIL lattice, quadrupole, coupling, optics 3131
 
  • L. S. Nadolski
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 354 m long 2.75 GeV third generation synchrotron light source delivering photons to beam-lines since January 2007. This paper will discuss in details the first attempts using LOCO code and problems encountered due to the storage ring lattice compactness. The introduction into the code of constraints on the quadrupole gradient variations gave tremendous improvements. The convergence is satisfactory, beta –beatings are reduced from 5% to below 1% RMS in both planes. Restoring the symmetry of the lattice enhanced the performances of the storage ring. In the last part, different ways of using LOCO as a powerful diagnostics tool will be given.  
 
THPC072 Impact of Betatron Motion on Path Lengthening and Momentum Aperture in a Storage Ring betatron, optics, resonance, undulator 3152
 
  • M. Takao
    JASRI/SPring-8, Hyogo-ken
  The amplitude of the betatron motion in an electron storage ring becomes large in some cases, e.g. Touschek scattered electrons or injected beam. Then we cannot ignore the effect of a finite amplitude of betatron motion on the beam dynamics. The path lengthening of the central trajectory of betatron motion is one of the most serious manifestations of such an influence. Due to the synchrotron motion, the variation of the path length is converted into the energy deviation, so that the betatron motion gives the impact on the momentum aperture in the storage ring. In this paper the path lengthening by a finite amplitude betatron motion is calculated by means of the canonical perturbation method. The derived formula for the path lengthening is simply represented by the product of the chromaticity and the invariant amplitude. Using the formula, we discuss the impact of the betatron motion on momentum aperture in a Touschek effect.  
 
THPC078 Injection Scheme of X-rays Source NESTOR injection, electron, quadrupole, simulation 3167
 
  • A. Y. Zelinsky, I. M. Karnaukhov, A. Mytsykov, V. L. Skirda
    NSC/KIPT, Kharkov
  In the paper the injection scheme of the X-ray source NESTOR based on the compact storage ring and Compton scattering is described. It is supposed to inject electron beam through fringe fields of a bending magnet. For final beam deflection electrical inflector on the running wave will be used. The layout of the injection scheme and elements characteristics are presented. The results of simulations of electron beam motion through 3-d fields of electro-magnetic devices of the injection channel are presented.  
 
THPC108 Observation of Bound States of Particles in the Storage Ring electron, synchrotron, radiation, vacuum 3230
 
  • A. S. Tarasenko, I. S. Guk
    NSC/KIPT, Kharkov
  The deviation of n-particle state lifetime from the law T1/n, where T1 is a mean lifetime of one particle, in the storage ring was experimentally observed. Authors relate this deviation to interaction between the particles, conditioned by the fields directed in passive resonant devices of vacuum chamber of the storage ring. Depending on type of connection of the beam with passive resonant device, the interaction can be repulsive or attracting. The binding energy of a pair of particles for a case of their effective attraction is calculated.  
 
THPC115 Commissioning of SOLEIL Fast Orbit Feedback system feedback, photon, insertion, controls 3248
 
  • N. Hubert, L. Cassinari, J.-C. Denard, J.-M. Filhol, N. Leclercq, A. Nadji, L. S. Nadolski, D. Pedeau
    SOLEIL, Gif-sur-Yvette
  The Fast Orbit Feedback system at SOLEIL is fully integrated into the BPM system equipped with Libera modules. Indeed, the correction algorithm has been embedded into the Libera FPGA which directly drives the power supplies of dedicated air coil correctors. The beam position measurements of the 120 BPMs are distributed around the storage ring by a dedicated network. Then, the correction is computed and applied at a rate of 10 kHz to 48 correctors installed over stainless-steel bellows, on each side of every straight section. The BPM system has been operational for some time. The fast orbit feedback system is in its commissioning phase. The design and first results of the latter are reported.  
 
THPC118 Performance and Future Developments of the Diamond Fast Orbit Feedback System feedback, electron, controls, target 3257
 
  • M. T. Heron, M. G. Abbott, J. A. Dobbing, G. Rehm, J. Rowland, I. Uzun
    Diamond, Oxfordshire
  • S. Duncan
    University of Oxford, Oxford
  The electron beam in the Diamond Synchrotron Light Source is stabilised in two planes using a Global Beam Orbit Feedback system. This feedback system takes the beam position from 168 Libera electron beam position monitors, for both planes, and calculates offsets to 336 corrector power supplies at a rate ~10kHz. The design and implementation will be summarised, and system performance and first operational experience presented. Current and potential future developments of the system will be considered.  
 
THPC123 The PSI DSP Carrier (PDC) Board - a Digital Back-end for Bunch-to-bunch and Global Orbit Feedbacks in Linear Accelerators and Storage Rings feedback, controls, kicker, undulator 3272
 
  • B. Keil, R. Kramert, G. Marinkovic, P. Pollet, M. Roggli
    PSI, Villigen
  PSI has developed a signal processing VXS/VME64x board for accelerator applications like low-latency bunch-to-bunch feedbacks, global orbit feedbacks or low-level RF systems. The board is a joint development of PSI/SLS staff and staff working on the contribution of PSI for the European X-ray FEL (E-XFEL). Future applications of the board include the Intra-Bunchtrain Feedback (IBFB) of the E-XFEL as well as the upgrade of the SLS Fast Orbit Feedback (FOFB) and Multibunch Feedback (MBFB). The PDC board has four Virtex-4 FPGAs, two TS201 Tiger Sharc DSPs, VXS and VME64x 2eSST interfaces, and two front panel SFP multi-gigabit fibre optic links. Two 500-pin LVDS/multi-gigabit mezzanine connectors allow to interface the FPGAs to two application-dependent mezzanine modules each containing e.g. four 500 Msps 12-bit ADCs and two 14-bit DACs for the IBFB and MBFB, or four multi-gigabit SFP fibre optic transceivers for the FOFB. This paper reports on hardware and firmware concepts, system topologies and synergies of future applications.  
 
THPC128 Bunch by Bunch Feedback by RF Direct Sampling feedback, acceleration, controls, damping 3287
 
  • T. Nakamura, K. Kobayashi
    JASRI/SPring-8, Hyogo-ken
  • Z. R. Zhou
    USTC/NSRL, Hefei, Anhui
  Recent ADCs have wide analog band-width which is enough for direct sampling of the RF signal from a beam position monitor without down conversion. We employed such ADCs for our bunch-by-bunch signal processor* and performed the feedback with the direct RF sampling of the signal from a beam position monitor to detect the position of bunches. With RF direct sampling, the down conversion stage which is used in usual RF front-end circuits and is composed of mixers, filters, delays and base-band amplifiers is not necessary. This simplifies the systems, and reduces the costs and the number of the tuning parameters. The feedback system with RF direct sampling is now in operation at user mode in SPring-8.

*T. Nakamura, K. Kobayashi. "FPGA BASED BUNCH-BY-BUNCH FEEDBACK SIGNAL PROCESSOR", Proc. of ICALEPCS 05.

 
 
THPC129 Coupling Correction in NSLS X-ray Ring quadrupole, coupling, electron, insertion 3290
 
  • M. G. Fedurin, I. Pinayev
    BNL, Upton, Long Island, New York
  In this paper we describe MATLAB script for reduction of the transverse coupling in the NSLS X-ray storage ring. The algorithm is based on varying strength of the skew quadrupoles and observation of the vertical beam size. The details of the iterative procedure are also discussed.  
 
THPC130 Integrated Global Orbit Feedback with Slow and Fast Correctors feedback, power-supply, brilliance, emittance 3292
 
  • I. Pinayev
    BNL, Upton, New York
  The NSLS-II Light Source which is planned to be built at Brookhaven National Laboratory will provide users with ultra-bright synchrotron radiation sources and is designed for horizontal beam emittances <1 nm. Full utilization of the very small emittances and beam sizes requires sub-micron orbit stability in the storage ring. This can be provided by means of a wide bandwidth orbit feedback system. Traditional approach is to utilize a uniform set of fast correctors or use two separate systems with strong slow and weaker fast correctors. In the latter case two systems need to communicate to suppress transients associated with different update rates of corrector settings. In this paper we consider an integrated system with two types of correctors. Its main feature is that setpoints of slow correctors are updated with the same rate as fast correctors; however the bandwidth is limited in order to stay in linear regime. Possible architectures and technical solutions as well as achievable performance are discussed.  
 
THPC131 On the Optimal Number of Eigenvectors for Orbit Correction feedback, quadrupole, simulation, closed-orbit 3295
 
  • I. Pinayev, M. G. Fedurin
    BNL, Upton, New York
  The singular value decomposition method is widely used for orbit correction in the storage rings. It is a powerful tool for inverting of the usually rectangular response matrices, which usually have rectangular form. Another advantage is flexibility to choose number of eigenvectors for calculation of required strengths of orbit correctors. In particular, by reduction in number of eigenvectors one can average over ensemble noise in the beam position monitors. A theoretical approach as well as experimental results on the NSLS VUV ring are presented.  
 
THPC132 Bunch by bunch Transverse Feedback Development at ESRF feedback, kicker, damping, ion 3297
 
  • E. Plouviez, P. Arnoux, F. Epaud, J. M. Koch, G. A. Naylor, F. Uberto
    ESRF, Grenoble
  This paper describes the bunch by bunch transverse feedback implemented at ESRF. The first motivation of this project was to be able to cope with the constraint of the future operation of the ESRF with a stored current increased from 200mA to 300mA with a uniform or quasi uniform filling, but we were also interested in possible improvement of the operation with others filling patterns (16 and 4 bunches patterns for instance). Our system uses a classical scheme: The signal coming from a set of button type electrodes is demodulated in a homodyne RF front end and processed in a FPGA DSP to derive a correction signal which is applied to the beam with a wide band stripline kicker. Depending on the filling pattern of the storage ring (uniform filling or filling with a small number of high charge bunches), different kind of transverse instabilities have been observed in the past, due to the resistive wall impedance, ion trapping or mode coupling. We have tested the effect of our system in these different situation and report also the results of these tests.  
 
THPC135 Vertical Emittance Measurements and Optimisation at the Australian Synchrotron emittance, quadrupole, coupling, lattice 3303
 
  • M. J. Spencer, R. T. Dowd, G. LeBlanc
    ASP, Clayton, Victoria
  Adjustment to the vertical emittance of the Australian Synchrotron storage ring was made using 28 skew quadrupoles. The skew quadrupole settings were calculated using the LOCO method which uses measurements of vertical dispersion as well as transverse coupling. The vertical emittance was monitored indirectly through lifetime, tune crossing, x-ray pinhole camera and calibrated model calculations. The paper outlines the results of these studies.  
 
THPC136 Design and Commissioning of a Bunch by Bunch Feedback System for the Australian Synchrotron feedback, kicker, damping, synchrotron 3306
 
  • M. J. Spencer, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  A transverse bunch feedback system has been designed in order to fight the effects of coupled bunch instabilities. This system is currently in the commissioning phase. A digital system was chosen because of its flexibility and diagnostic potential. While the major components were sourced from a private company, time has also been spent on in house development of an analogue front-end and the diagnostic components of the software.  
 
THPC138 Bunch-by-Bunch Online Diagnostics at HLS feedback, diagnostics, kicker, injection 3309
 
  • J. H. Wang, Y. B. Chen, L. J. Huang, W. Li, L. Liu, M. Meng, B. Sun, L. Wang, Y. L. Yang, Z. R. Zhou
    USTC/NSRL, Hefei, Anhui
  The design goal for the bunch-by-bunch analogue transverse feedback system at the Hefei Light Source (HLS) is to cure the transverse coupled bunch instabilities. The prototype implemented bunch-by-bunch feedback in 2006. Then we changed the circuit and replaced some components by ones of higher performance in order to get better effect. Diagnostic techniques are important tools to determine instabilities and to confirm the performance of the feedback systems. In addition to transverse feedback this system can provide online beam diagnostics and analysis in transverse and longitudinal directions. The diagnostic functions can record the response of every bunch while the feedback system manipulates the beam. The experimental results are presented.  
 
THPC153 Timing System of the New Elettra Injector booster, injection, extraction, gun 3351
 
  • S. Bassanese, A. Carniel, R. De Monte, M. Ferianis, G. Gaio
    ELETTRA, Basovizza, Trieste
  A new timing system has been developed to operate the new injector for the Elettra storage ring. It implements a versatile injection system to support standard and exotic fillings as well as the top-up mode of operation. Based on an in-house developed programmable counter VME board, the system provides all the needed triggers by the pre-injector LINAC, the booster injection, the booster ramping system, the booster extraction, and the SR injection. An overview of the system architecture and functionality is described and the performance of the board is reported. All the trigger signals are distributed to the timing clients by means of optical links.  
 
THPC162 The SSRF Timing System booster, linac, controls, injection 3369
 
  • L. Y. Zhao, D. K. Liu, C. X. Yin
    SINAP, Shanghai
  In the Shanghai Synchrotron Radiation Facility (SSRF), various equipment in the 150MeV linac, the full energy booster and the 3.5GeV storage ring need to be triggered and synchronized by a low jitter timing system. An event system based on distribution network is implemented in the SSRF timing system. In this paper, the software and hardware structure of the SSRF timing system are described and the system performance is presented.  
 
THPP015 Design of a Versatile Injector for a Low-energy Experimental Platform at KACST ion, ion-source, injection, extraction 3404
 
  • M. O.A. El Ghazaly, A. A. Alzeanidi
    KACST, Riyadh
  • V. Aleksandrov
    JINR, Dubna, Moscow Region
  • A. I. Papash
    MPI-K, Heidelberg
  • C. P. Welsch
    GSI, Darmstadt
  At the National Centre for Mathematics and Physics (NCMP), at the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, a multi-purpose low-energy experimental platform is presently being developed in collaboration with the University of Heidelberg, Germany. The aim of this project is to enable a multitude of low-energy experiments with most different kinds of ions both in single pass setups, but also with ions stored in a low-energy electrostatic storage ring. In this contribution, the injector of this complex is presented. It was designed to provide beams with energies up to 30 kV/q and will allow for switching between different ion sources from e.g. duoplasmatron to electrospray ion sources and to thus provide the users with a wide range of different beams. We present the overall layout of the injector with a focus on the optical design and the foreseen diagnostic elements.  
 
THPP016 Preliminary Design of a Highly-flexible Extraction Scheme for the USR extraction, lattice, septum, antiproton 3407
 
  • Ph. Schmid, K.-U. Kuehnel, C. P. Welsch
    MPI-K, Heidelberg
  • A. I. Papash
    JINR, Dubna, Moscow Region
  In the future Facility for Low-energy Antiproton and Ion Research (FLAIR) at GSI, the Ultra-low energy electrostatic Storage Ring (USR) will provide cooled beams of antiprotons and possibly also highly charged ions down to energies of only 20 keV/q. Beams with small momentum spread and low emittance will enable a wide range of hitherto impossible experiments. The large variety of planned experiments requires a highly flexible longitudinal time structure of the extracted bunches, ranging from ultra-short pulses in the nanosecond regime to quasi DC beams. In this contribution, a preliminary design of the extraction scheme is presented. Furthermore, possible solutions for the compensation of effects from the extraction region on the very-low energy beam are shown, including results from beam transport calculations.  
 
THPP046 Applicability of Stochastic Cooling in Small Electrostatic Storage Rings pick-up, ion, electron, kicker 3464
 
  • H. Danared
    MSL, Stockholm
  Several small electrostatic storage rings have been built or are being built for experiments in atomic and molecular physics. One example is the DESIREE double electrostatic storage ring* under construction at the Manne Siegbahn Laboratory. At the KEK electrostatic storage ring, electron cooling of 20 keV protons has been demostrated**. For heavy molecules, however, including bio-molecules, electron-cooling times are unrealistically long because of the low ion velocity and the correspondingly low electron energy which results in very small electron currents. For this reason, electron cooling is not foreseen for DESIREE. The rates of stochastic cooling, on the other hand, are at first glance unrelated to beam energy. Furthermore, the low particle numbers expected for many heavy molecules seem to make stochastic cooling attractive, theoretical rates being inversely proportional to particle numbers. In this paper, the rates of stochastic cooling for slow heavy particles are investigated with respect to, mainly, the bandwidths and signal strengths that can be expected at the low particle velocieties that are of interest at, e.g., DESIREE, and some numerical examples are presented.

* P. Löfgren et al., these proceedings
** E. Syresin, K. Noda and T. Tanabe, Proc. EPAC 2004, p. 162

 
 
THPP051 Stochastic Cooling in the Framework of the FAIR Project at GSI pick-up, antiproton, vacuum, cryogenics 3479
 
  • F. Nolden, A. Dolinskii, B. Franzke, U. Jandewerth, T. Katayama, C. Peschke, P. Petri, M. Steck
    GSI, Darmstadt
  • D. Möhl
    CERN, Geneva
  Stochastic cooling at FAIR will be one of the instruments to get cooled beams of rare isotopes and antiprotons for high resolution experiments. Stochastic cooling systems will be installed in the CR and RESR storage rings. The Collector Ring CR is a dedicated storage ring for the first step cooling of antiproton beams (3 GeV or β=0.97) produced at the antiproton production target, and of radioactive beams (740 MeV/u or β=0.83) prepared in the Super Fragment Separator. The pick-up and kicker systems have designs which allow very efficient cooling for both particle velocities. There will be different ring optical settings for optimum cooling of antiprotons or rare isotopes. Whereas the next cooling step for rare isotopes will be electron cooling, antiprotons will be accumulated in the RESR using a similar accumulation scheme which was formerly applied at the AA at CERN. The paper presents the CR and RESR system layouts and new hardware developments.  
 
THPP067 An Intense Neutron Source with Emittance Recovery Internal Target (ERIT) Using Ionization Cooling target, proton, emittance, accumulation 3512
 
  • Y. Mori
    KURRI, Osaka
  • M. Muto
    FFAG DDS Research Organization, Tokyo
  • K. Okabe
    University of Fukui, Faculty of Engineering, Fului
  An intense neutron source with emittance recovery internal target (ERIT) using ionization cooler ring has been developed at Kyoto University Research Reactor Institute (KURRI) for boron neutron capture therapy (BNCT). The neutron source consists of a 11MeV H- linac and a FFAG storage ring. A thin (10micron) Be target is placed in the ring. In order to reduce an emittance growth caused by multiple scattering at the target, an ionization cooling with a low frequency and high voltage RF cavity is utilized. The beam is expected to be survived for more than 500 turns in the ring, which can increase beam efficiency largely to reduce an injected beam current.  
 
THPP121 The SSRF Storage Ring Dipole and Sextupole Magnet Power Supplies power-supply, controls, dipole, sextupole 3641
 
  • C. L. Guo, Z. M. Dai, D. M. Li, H. Liu, T. J. Shen, W. F. Wu
    SINAP, Shanghai
  SSRF is a third generation synchrotron radiation light source. It has a full energy injection storage ring of 3.5GeV. The storage ring dipole magnet string and sextupole magnets strings are powered by 10 large magnet power supplies. The power supply output current ranges from 250A to 800A, and the output voltage ranges from 140V to 840V. These power supplies are digital controlled, with bridge topology, and diode rectifiers with step-down transformers. In this paper, the commissioning results of these power supplies are presented, together with the circuit topology and the control schemes.  
 
THPP130 SSRF Magnet Power Supply System power-supply, dipole, booster, controls 3667
 
  • T. J. Shen, H. G. Chen, C. L. Guo, Z. M. Hu, M. M. Huang, D. M. Li, R. Li, H. Liu, S. L. Lu, D. X. Wang, W. F. Wu, R. N. Xu, S. M. Zhu, Y. Y. Zhu
    SINAP, Shanghai
  The Shanghai Synchrotron Radiation Facility (SSRF) is a third-generation synchrotron radiation light source. In SSRF, there are 520 sets of magnet power supplies for the storage ring and 163 sets for injector. All of the power supplies are in PWM switched mode with IGBT. A high precision stable output power supply for 40 dipoles rated at 840A/800V with the stability of ±2·10-5/8hrs is used for the storage ring. 200 sets of chopper type power supplies are used for exciting main winding of quadrupoles independently. In the booster, two sets of dynamic power supplies for dipoles and two sets for quadrupoles run at the biased 2Hz quasi-sinusoidal wave. All above power supplies work with digital power supply controllers designed by either PSI or SINAP. All power supplies are manufactured at professional power supply companies in China.  
 
THPP133 Magnet Power Converters for the New Elettra Full Energy Injector dipole, booster, quadrupole, controls 3673
 
  • R. Visintini, G. Cautero, M. Cautero, D. M. Molaro, M. Svandrlik, M. Zaccaria
    ELETTRA, Basovizza, Trieste
  A large number of power converters has been required to supply the coils and the magnets of the four sub-structures of the new Elettra full energy injector. The Linac, and the two transfer lines require highly stabilized DC power converters while the Booster has to be operated at 3 Hz supplying the magnets with sinusoidal current waveforms. The extraction Bumpers require slow pulse supplies. In order to keep all output voltages below 1 kV, a special connection has been adopted for the Booster dipoles. A particular type of low power four-quadrant converters with embedded Ethernet connection has been designed at Elettra for this specific project. The article will present the relevant facts about the different power converters and their performances.  
 
THPP139 Stainless Steel Vacuum Chambers for the SSRF Storage Ring vacuum, synchrotron, synchrotron-radiation, radiation 3688
 
  • D. K. Jiang, Y. L. Chen, Y. Liu, Y. Lu, Y. M. Wen, L. Yin, Z. T. Zhao
    SINAP, Shanghai
  • G. D. Liu, Z. A. Zheng
    Shanghai Sanjin Vacuum Equipment Ltd. Company, Shanghai
  Stainless steel 316LN plate was adopted as main material for SSRF storage ring vacuum chambers and ante-chamber structure was used just as other 3rd light source. The analysis for the deformation of the chambers under atmospheric pressure and the thermal situation under synchrotron radiation were done with ANASYS program. Many problems on the structure design and fabrication technique were revealed and suitable solving methods were found in the process of development and manufacture of nine chamber prototypes. Deep draw die was used to form the chambers’ figuration. Wire cutting and CNC machining were used to manufacture the main components. The flatness tolerance, straightness tolerance and the deformation of the chambers under atmospheric pressure were all less than 1mm. After annealed in the vacuum furnace at 850℃, the magnetic permeability of welding seal was reduced from 2.5 to 1.02, the residual stress was deleted, and the vacuum performance was improved. Now SSRF vacuum system is being operated very well. The average pressure without beam is about 2.5×10-8 Pa and the average pressure with beam of 3GeV/100mA is about 8×10-7 Pa.  
 
THPP140 First Experience on NEG Coated Chambers at the Australian Synchrotron Light Source vacuum, synchrotron, insertion, insertion-device 3690
 
  • P. Manini, A. Conte, S. Raimondi
    SAES Getters S.p. A., Lainate
  • B. Mountford
    ASP, Clayton, Victoria
  The Australian Synchrotron, a 3 GeV third generation Light Source saw its first light in 2006. At full capacity it will house more than 30 photon beam lines providing state of the art facilities to support fundamental and applied research to the Australian scientific community. In the regional context, the Australian Synchrotron will also effectively complement the lower energy synchrotrons in Singapore (0,8 Gev) and Taiwan (1.5 GeV). The vacuum system of the storage ring, 216 m circumference, includes ion pumps and NEG cartridge pumps. Two NEG coated, ESRF style, aluminium Insertion Devices, each 2,5 m long, have been also installed in the storage ring to boost machine parameters and broaden the spectrum of wavelength available for experiments. Preliminary vacuum results obtained during conditioning and initial operation of the Insertion Devices are reported and compared to uncoated chambers. These results confirm the effectiveness of the NEG coating technology in reducing pressure build up inside conductance limited narrow chambers. Technological issues related to the chambers preparation, film deposition, quality control and characterization will be also discussed.  
 
THPP141 Test of a NEG Coated Copper Dipole Vacuum Chamber vacuum, dipole, synchrotron, photon 3693
 
  • E. J. Wallén, M. Berglund, A. Hansson
    MAX-lab, Lund
  • R. Kersevan
    ESRF, Grenoble
  The paper reports about a test carried out at the 1.5 GeV storage ring MAX II where a standard dipole chamber made of stainless steel was replaced by a NEG coated chamber made of copper. The standard MAX II stainless steel dipole vacuum chamber is connected to an ion pump and a sublimation pump while the NEG-coated copper dipole vacuum chamber has no additional pumps. The NEG-coated dipole chamber made of copper has been demonstrated to work well with a stable vacuum level in the region where it is installed. The coating procedure for the bent dipole chamber copper tube is slightly more complicated than the coating procedure for a straight chamber of similar size due to its curvature and lack of line-of-sight. The procedure is also described in some detail. The main motivation for the interest in NEG-coated vacuum tubes is the reduced cost of the vacuum system and also the possibility to build more slender vacuum systems, thus simplifying and optimizing the design of accelerator magnet systems.  
 
THPP142 Vacuum Conditioning of the SOLEIL Storage Ring with Extensive Use of NEG Coating vacuum, quadrupole, photon, synchrotron 3696
 
  • C. Herbeaux, N. Béchu, J.-M. Filhol
    SOLEIL, Gif-sur-Yvette
  The vacuum system of the SOLEIL storage ring is designed using a combination of standard pumps like Sputter Ion Pumps and Titanium Sublimation Pumps (TSP) and Non Evaporable Getter (NEG) coating. Following the ESRF results on low gap insertion device (ID) chambers, it was decided to use, in addition to the traditional pumps, NEG coating deposited by magnetron sputtering on extruded aluminium vessels. This has been applied in an extensive way to all the straight vessels of the storage ring that means quadrupole vessels and ID vessels, which represent about 56% of the circumference. The starting configuration of the SOLEIL vacuum system included all the NEG coated low gap ID chambers among which a 10.5 m long chamber. Conditioning of the vacuum system over an integrated beam dose of 500 A.h will be presented. The periodical re-activations of the TSP performed early 2007 improved significantly the conditioning rate. A comparison of the vacuum behaviour of two similar cells one with NEG coating and traditional pumping versus one with only NEG coating demonstrates the ability of the NEG coating to keep alone the pressure at low level.  
 
THPP144 The Vacuum System for SSRF Storage Ring vacuum, photon, synchrotron, power-supply 3702
 
  • D. K. Jiang, L. Chen, Y. L. Chen, W. Li, Y. Liu, Y. Lu, H. Zhang
    SINAP, Shanghai
  The vacuum system for SSRF was completed at the end of 2007 and has run for one month without any malfunction. The vacuum chamber for the storage ring made from stainless steel 316LN plate. About 180 absorbers and 80 RF bellows with a single finger structure are used for the storage ring. About 292 compound pumps (SIP+NEG) and 188 TSP are used. After the vacuum system in the straight section of a cell and all pumps in the bending section were baked, the ultimate pressure reached 2×10-8 Pa. Normally, the temperature raise on the chambers any where is less than 4℃ with current 100mA. The temperature raise of the cooling water for all absorbers is less than 3℃. The vacuum control and interlock system are on working order.  
 
THPP145 Machine Operation Issues Related to the Vacuum System of the ESRF vacuum, undulator, cryogenics, beam-losses 3705
 
  • R. Kersevan, M. Hahn, I. Parat, D. Schmied
    ESRF, Grenoble
  This paper deals with various operational issues related to the vacuum system of the ESRF storage ring. The impact on the vacuum pressure, beam lifetime, beam losses and other machine parameters after installation of new chambers, diagnostics, RF cavities and insertion devices, and vacuum leaks is discussed in some detail. Particular emphasis is given to the behaviour of the prototype of a 2m-long cryogenic in-vacuum undulator, a new RF cavity, and NEG-coated chambers. Lessons learned from the operation of these and other vacuum components will be extended to the proposed machine upgrade.  
 
THPP146 High-voltage Power Supply Distribution System vacuum, ion, controls, monitoring 3708
 
  • M. Kobal, D. Golob, M. Plesko, A. Podborsek
    Cosylab, Ljubljana
  • T. Kusterle, M. Pelko
    JSI, Ljubljana
  High-voltage splitters enable connecting a larger number of ion-pumps to a single ion-pump controller. In particle accelerator facilities where relatively small pumps are used, using high-voltage splitters can significantly reduce costs and rack space. By using simple high-voltage splitters some functionality of the conrollers can be lost. The presented high-volage splitter is one of the most advanced devices on the market. It measures current going to every pump in the range 100 pA to 100 mA with an accuracy of 5%. Fully configurable tables are used to convert the measured current to the pressure at the pump. Current measurements are also used to monitor cable and ion-pump aging which results in linear increase of current with time. Hardware interlocks are used to disconnect individual pumps in case of poor vacuum to avoid pump damage. The limits can be set by the user, who can also set the number of active pumps. EPICS support was developed for the device with graphical user interfaces writen in EDM, java and WebCA. Since the presented device covers or exceeds a lot of the ion-pump controller functionality, simpler controlers can be used.  
 
THPP147 NEG Coated Chambers at SOLEIL: Technological Issues and Experimental Results vacuum, synchrotron, controls, radiation 3711
 
  • P. Manini, A. Bonucci, A. Conte, S. Raimondi
    SAES Getters S.p. A., Lainate
  • N. Béchu, C. Herbeaux
    SOLEIL, Gif-sur-Yvette
  The SOLEIL accelerator complex includes a 100 MeV LINAC pre-injector, a full energy booster synchrotron and a 2.75 GeV electron storage ring with a 354-meter circumference, which provides synchrotron light to 24 photon beam lines. SOLEIL is the first synchrotron facility specifically designed to make extensive use of Non Evaporable Getter (NEG) coating technology to improve the vacuum, reduce bremsstralhung radiation and boost beam performances. In fact, NEG coating of the straight parts of the vacuum system covers more than 50% of the overall storage ring surface and includes 110 quadrupole and sextupole chambers as well as several conductance limited narrow insertion devices. Use of such a large amount of NEG coated chambers has posed several challenges in term of coating technology, chamber testing, installation and machine commissioning. We report in the present paper main technological issues related to the chambers preparation, film deposition, quality control and characterization. Chambers installation in the main ring, conditioning and activation procedures as well as preliminary vacuum performances will be also discussed.  
 
THPP151 Feasibility Study for High Performance Vacuum Chamber photon, vacuum, electron, positron 3720
 
  • Y. Tanimoto
    KEK, Ibaraki
  For longer beam lifetime, many synchrotron light sources employ ante-chamber type of beam ducts to reduce photon- and electron-stimulated desorption gases around stored beams. Still more reduction, however, can be expected if an X-ray transparent membrane, such as Beryllium thin film, is installed between the beam chamber and the ante-chamber because X-rays from stored beams pass through the membrane while gas molecules desorbed in the ante-chamber are shut out by the membrane. Similarly, photoelectrons and secondary electrons traveling from the ante-chamber to the beam chamber are also shut out by the membrane; this function is expected to mitigate beam-photoelectron instability in positron storage rings. Feasibility study for this type of vacuum chamber has been started at PF, and the result of the first-stage experiment will be presented.  
 
FRXBGM01 Impedance Computation and Measurement in Modern Storage Rings impedance, simulation, kicker, single-bunch 3728
 
  • R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  Recent progress in the evaluation of machine impedance and instability thresholds will be reviewed, and comparisons made between measurements and predicted impedance in recently commissioned storage rings.  
slides icon Slides