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Abstract 
In this paper we explore the use of multi-objective 

genetic algorithms (MOGA) to locate globally optimized 
lattice settings. MOGA is an efficient and robust tool 
which can practically address problems with numerous 
parameters, constraints, and objectives. The MOGA 
technique complements the previously introduced GLASS 
(GLobal Analysis of all Stable Settings) analysis 
technique providing the lattice designer with powerful 
qualitative and quantitative tools for lattice studies. Using 
the Advanced Light Source (ALS) for illustration, two 
examples of MOGA are shown – (i) 3 parameters with 2 
objectives case and (ii) a 6 parameter 3 objective case. 

INTRODUCTION 
The traditional process of designing and tuning a 

magnetic lattice of a particle storage ring lattice to 
produce certain desired properties is not straight forward. 
Often solutions are found through trial and error and it is 
not clear that the solutions are close to optimal. The goal 
of this study is to explore using genetic algorithms for 
global optimization of storage ring lattices. Optimizing a 
lattice is a complicated problem for a variety of reasons 

• Very nonlinear – many local optimums 
• Many parameters – most storage rings have 4 or 

more families of quadrupoles  
• Multi objective – typically one wants to optimize 

more than one parameter simultaneously (such as 
beta-functions, emittance, …) and would like to 
find the optimal tradeoffs 

Multi-Objective Genetic Algorithms (MOGA) are 
ideally suited to this problem. They are 

• Very efficient and robust – can vary many 
parameters and search for multi-objectives 

• Well suited for nonlinear discretely continuous 
solutions 

 
Figure 1: Twiss functions for one sector of the ALS 
adjusted to the present settings 

To illustrate the use of MOGA we chose to use the 
lattice of the ALS as an example. The ALS lattice consists 
of 12 sectors. Each sector is made up of a triple-bend 
achromat structure. In each sector there are 3 bends, six 
quadrupoles and 4 sextupoles sectors. In the nominal 
setting the lattice functions for one sector are mirror 
symmetric and shown in Fig. 1 for the nominal settings. 

GLASS 
Before introducing MOGA we begin with a GLASS 

analysis of the ALS lattice. GLASS (short for GLobal 
Analysis of all Stable Settings) [1] is a technique that 
gives a global view of the lattice.  

For a full GLASS analysis one follows these steps 
• Find all stable settings 
• Compute properties of all stable settings 
• Filter by property all settings that may be of 

interest 
At the end of the process one has a database with all 

possible solutions and associated properties. Then 
querying the database against certain properties it is 
possible to find any and all lattice settings that satisfy the 
properties. For simple lattices this is not only possible but 
it also is very practical. Here we will only show the first 
step of a GLASS analysis for ALS. For a complete 
GLASS analysis see [1]. We assume mirror symmetry 
(just three quad families – QF, QD, QFA) and perform a 
grid scan locating all settings where the following 
constraints are satisfied 

• Trace |Mx,y| <2 and partition functions, jx,z >0  
• βx,y <1000m, εx <1e-4mrad, σx < 0.1m. 

The results are plotted in Fig. 2 with regions numbered. 

 
Figure 2: GLASS results for the symmetric ALS sector 
projected onto the QF/QD plane with 13 discretely 
continuous regions labeled. 

Now we introduce genetic algorithms and show how 
one can find globally optimal sets of solutions where  ____________________________________________  
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multi-pole objectives (such as optimizing β-functions and 
emittances) are desired. 

MULTI-OBJECTIVE GENETIC 
ALGORITHMS 

 
The classical methods for multi-objective optimization 

are usually performed by applying different weight to 
each objective function, and then converting it into a 
single-objective optimization problem. The quality of 
solutions are depending on how the weight are chosen, 
and in some practical case, e.g. different unit and scale, it 
is not a trivial task. Genetic Algorithm (GA) together with 
Pareto optimality gives another approach to the global 
optimal of multi-objective problems. 

Genetic Algorithms rely on the analogy with the law of 
natural selection. An initial population is generated 
randomly, ranked according to their value with respect to 
the optimization functions (dominance), and the best ones 
are chosen to create the next generation, and a random is 
then applied to these newly born children. This process is 
continued generation-by-generation until the stop 
condition is met, which can be either the number of 
generation, satisfaction of the result, or the stability of the 
population. 

One can say that one solution dominates another 
solution when this solution is better in at least one 
optimization function, but no worse in the other functions. 
A second case would be one solution is better in some 
functions, but worse in others, and they are called non-
dominated. A non-dominated set is composed of 
individuals where none of them is dominated by another 
one in this set. The set of non-dominated solutions is 
assigned rank 1. Once a non-dominated set are formed, a 
second non-dominated set can be formed in the rest of the 
population, and we assign a rank 2 to it. The natural 
selections are made from the first rank till the population 
size is full. The Optimal solution is the Pareto Set with 
rank 1 at the last generation. 

The flow of GA is 
• initialize the population 
• naturally select the elite solutions and create the 

next generation. 
• mutate the new generation. 
• evaluate the objective functions of the new 

generation. 
• repeat the selection (amongst the children and 

parents keeping the elitist from generation to 
generation ), mutation until the stop conditions 
are met. 

 
For more information on MOGA the following reference 
is suggested [2]. 

Example 1.    3 Parameters and 2 Objectives 
In our first example of MOGA we find the globally 

optimize solution of a 3 parameter 2 objective search. The 
example is the following – the undulator brightness in a 

light source depends upon the emittance and β-function in 
the undulator. For example for a 2 meter long ID the 
optimal β-function would be 1m and the optimal 
emittance is as low as possible.  So for this example the 
following objective, constraints, and parameters are 

• Parameters – kQF, kQD, kQFA  
• Objectives – Find the Pareto optimal curve 

where the objectives are to miminize emittance 
while keeping β (in our case we choose βx) 
close to 1m in the insertion device straight. 

• Constraints - |trace(Mx,y)| < 2.0, jx,y > 0, βx,y < 
30m,  max|ηx| < 0.4m   

 
Figure 3: Initial distribution of quadrupole values 
projected onto the QF/QD plane. Values are between -10 
and 10. (same as Fig. 2). 

 
Figure 4: Distribution of generations 15 (Top), 50 
(middle), and 199 (bottom) in parameter and objective 
space. The objective space axes are 1 to 4 nm hor. and 
deviation from 1 m vert. Red (not met all constraints), 
Green (mets all constraints), Blue (on Pareto optimum). 

  
We begin by distributing an initial population. This is a 

random distribution of quadrupole (kQF, kQD, kQFA) 
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strengths. The population size we chose was 20,000 and 
the initial distribution is shown in Fig. 3. Then using 
MOGA, a new generation is created and evaluated. The 
process continues until convergence. For this example 
200 generations were created. Computational time 
roughly 0.5 hours on a Pentium 4 duo core processor.  

The population evolves in a way that they first tend to 
satisfy the constraints and later to converge upon optimal 
objective values. Let’s look a few generations to better 
understand the process. In Fig 4., the generations 15, 50, 
and 199 are plotted in both parameter space and objective 
space.  We see that at generation 15 (top plots) the 
population has converged upon the stable region that was 
shown in Fig.2. There are still many points at generation 
15 and this is due to the tighter constraints than for the 
GLASS analysis. However in objective space one is far 
from convergence. In generation 50 (middle plots) one 
clearly sees the Pareto set starting to form (blue dots) and 
there are two discrete regions (Regions 3 and 4 in Fig. 2). 
Finally after 199 generations (bottom plots) the entire 
population has converged on the Pareto optimal set. In 
Fig. 5 we plot 3 lattices on the Pareto optimal.  

 
Figure 5: Twiss functions for three lattices on the Pareto 
optimal set. See the trade-offs between βx and εx. 

Example 2.    6 Parameters and 3 Objectives 
In this example we use MOGA to explore finding 

global optimums with 6 parameters and 3 objectives. This 
is interesting because most accelerators have more than 3 
“knobs” to optimize. In the case of larger number of 
parameters GLASS analysis rapidly becomes impractical. 
However MOGA is still very efficient and can handle 
more parameters. Here we search for optimal high/low 
beta structure using two sectors and imposing mirror 
symmetry. This is an interesting example because high 
beta straights are important for certain regions such as 
injection. The constraints are the same as before except 
with a 50 m β-max and the parameters and objectives are 

• Parameters – kQF, kQD, kQFA (left and right) 
• Objectives – Find the Paredo optimal curve 

where the objectives are to miminize emittance 
while keeping β (in our case we choose βx) 

close to 1 m in the insertion device straight 
and 10 m in the other straight. 

Again we chose to use a population of 20,000 but 
doubled the number of generations (200 – 400).  
Computational time roughly 4 hours on a Pentium 4 duo 
core processer. The Pareto optimum is a discretely 
continuous surface in objective space which is not plotted 
here. Fig. 6 is a plot of 2 of the Pareto optimum solutions. 
One solution has a large vertical β-function in the straight 
and the other doesn’t. All of the solutions have similar 
lattice functions to one of these two. 

 

 
Figure 6: Twiss functions for two lattices on the Pareto 
optimum – one with high and other low βy in center bend. 

SUMMARY 
We demonstrated the effectiveness of MOGA for 

locating Pareto optimal sets in a lattice optimization 
process. The MOGA technique is complementary to 
GLASS and we believe the combination of the two is 
extremely beneficial in the understanding and 
optimization of storage ring magnetic lattices. It is 
practical for lattices with a large number of parameters.  
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