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Abstract

We present an update on the development of the new

code for long-term simulation of beam-beam effects in par-

ticle colliders. The underlying physical model relies on

a matrix-based arbitrary-order particle tracking (including

a symplectic option) for beam transport and the general-

ized Bassetti-Erskine approximation for beam-beam inter-

action. The computations are accelerated through a paral-

lel implementation on a hybrid GPU/CPU platform. With

the new code, previously computationally prohibitive long-

term simulations become tractable. The new code will be

used to model the proposed Medium-energy Electron-Ion

Collider (MEIC) at Jefferson Lab.

INTRODUCTION

Beam-beam interaction is one of the most important dy-

namical factors limiting the collider’s luminosity and there-

fore limiting its scientific efficiency. Until recently, the

study of long-term stability of rings with beam-beam in-

teractions was prohibitive due to the heavy computational

load. Previous attempts at investigating the beam-beam

interaction for the proposed Medium-energy Electron-Ion

Collider (MEIC) [1] at Jefferson Lab were restricted to lin-

ear transport and short term behavior [2, 3].

Effects due to collision between the two beams in a col-

lider is described by the Poisson equation which can be

solved by a number of methods at a high computational

cost. This computational load can be alleviated by invok-

ing various approximations.

BEAMBEAM3D [4] uses a shifted integrated 2D

Green’s function method to solve the equation on a grid.

The 2D approximation is made possible by dividing the

beams into thin slices. Another approximation is to as-

sume a gaussian beam distribution which leads to a one-

dimensional integration [5]. Going a step further, Bassetti-

Erskine (BE) [6] solution introduces one more level of ap-

proximation in which the beams are treated as if (1) they

have vanishing length and (2) gaussian transverse distri-

butions. When these approximations hold, the solution to

the Poisson equation is exact and amenable to efficient nu-

merical implementation. Because of this efficiency, the BE

model at the heart of a beam-beam code gives us the best

chance of accurately studying the long-term dynamics in

colliders. Their solution for flat beams is generalized here
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to the general geometry which may also include upright

(σy > σx) and round (σy = σx) beams.

We relax the first approximation of an infinitesi-

mally short bunch by dividing both finite-length colliding

bunches into several slices. Each of the slices is then treated

as an infinitesimally short bunch. To that end, the new code

employs the synchro-beam mapping, the only known sym-

plectic beam-beam map usable for the long bunch [7].

The second approximation—that the beams are transver-

sally gaussian—is not limiting in any way. We are inter-

ested in the steady-state, stable long-term behavior. De-

parture from gaussian would hint at excessive collective or

resonant effects which can be avoided by a better choice of

the working point and design parameters. We check the ad-

equacy of the BE approximation by monitoring the higher

order moments of the beam distributions in the slices to

detect deviations from gaussian.

The new approach presented in this paper enables us to

carry out weak-strong and strong-strong beam-beam simu-

lations with a nonlinear transport of arbitraryly high order.

The code is significantly accelerated by carrying out mas-

sively parallel computations involving particle tracking and

collisions on a GPU platform.

ALGORITHM DESCRIPTION

Each colliding beam is simulated by a set of particles

sampling their initial gaussian distributions. Beam-beam

effects of one beam on the other is modeled using the gen-

eralized BE approximation. Each beam is divided into

slices that are small enough for the BE approximation of

infinitesimally short length to hold. In between the con-

secutive collisions, the beams are transported through the

rings using the Taylor maps, with symplectic tracking as a

computationally more expensive option.

Particle Tracking

The particle transport through the ring is carried out us-

ing an arbitrary-order Taylor map generated by COSY In-

finity [8]. We choose a map-based tracking because it is

much faster than the alternative approach of integrating the

particle motion through the ring lattice and thus is the only

way to provide the necessary large number of turns within

a reasonable computation time. A map-based tracking is

efficiently parallelizable. Moreover, the expansion coeffi-

cients may offer more insight into the optical system.

Symplectic tracking option is implemented using the

generating function F2 [9] for which (qf ,pi) =
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J∇F2(qi,pf), and J =

[

0 −I

I 0

]

, where (qi,pi) and

(qf ,pf ) are the initial and final phase-space coordinates,

respectively. Applying a truncated Taylor map M associ-

ated with the generating function F2 calculates (q′

f ,p
′

f ) =
M(qi,pi), which, along with (qi,pi), is used as the start-

ing point in computing symplectic final solution (qf ,pf ).
Because (q′

f ,p
′

f ) is very close to (qf ,pf ), the equation

above can be solved to machine accuracy within a few iter-

ations.

Collision

The generalized BE formalism applies only to an in-

finitely short bunch. In order to simulate realistic beams

of finite length, we use the prescription similar to what has

been done in BEAMBEAM3D: divide each bunch in sev-

eral slices, each of which can be treated as an infinites-

imally short bunch. At every collision between the two

beams, each slice in one beam collides with each slice in

the other beam according to the generalized BE formalism.

When each bunch is divided intoM slices, there is a total

of M2 collisions between the slices. Each particle experi-

ences M kicks, one from each slice in the other beam. This

means that the computational load associated with the col-

lision of the two beams scales linearly with the number of

slices. It also scales linearly with the number of particles.

We bin the bunch particles into slices based on their lon-

gitudinal positions. Each slice then has a sequence of loca-

tions along the beam orbit around the IP, at which it collides

with the similarly-defined different slices of the opposing

beam. Since the bunches’ transverse phase space parame-

ters are changing rapidly around the IP, each slice of each

colliding pair has to be propagated properly to each colli-

sion point. For each of the slices in a collision, we apply

an appropriate drift transformation taking the slice from the

IP to the collision point. We then calculate and apply the

beam-beam kick to each of the particles in the two collid-

ing slices based on the slices’ transverse parameters at the

collision point. We then propagate the slices back to the

IP by an inverse drift but with the kick information already

contained in the particle coordinates. This process is re-

peated sequentially for each slice in every collision in the

order, in which the slices collide. This treatment allows for

an accurate depiction of the hourglass effect.

Hourglass Effect

When the bunch’s length is on the order of the beta func-

tion (β∗) at the IP, the luminosity experiences a geometrical

reduction known as the hourglass effect. The reduction fac-

tor in luminosity due to the hourglass effect is analytically

estimated in [10].

We use our new code to compute the hourglass effect

by comparing the luminosity computed with many slices—

where hourglass effect can be successfully modeled—to

the luminosity computed in a simulation with a single slice,

where the entire distribution is collapsed to a single in-

finitesimal slice, and as such cannot account for the effect.
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Figure 1: The hourglass effect as a function of the initial

bunch length, computed in a simulation with N = 128000
particles and M = 10 slices in each bunch using our new

code (red curve) and using the analytic expression from

[10] (green curve). The lattice used is that of the MEIC,

with the constant ratio σ+
z /σ

−

z ; the current MEIC baseline

design has σ+
z = 1 cm and σ−

z = 0.75 cm [1].

Each analytic point (shown in green in Fig. 1) is computed

after extracting average values of transverse beam sizes and

effective beta functions at the IP after the equilibrium is

reached and plugging them into the integral equation for

the reduction factor found in [10]. The ratio between the

two luminosities yields the computed value for geomet-

ric reduction factor. The results are shown in Fig. 1. The

agreements between the computed hourglass reduction fac-

tor and the analytically predicted value is excellent.

Convergence

When the finite longitudinal size of a particle bunch is

simulated with M slices, it is expected that the relevant dy-

namical quantities converge as the number of slices grows.

It is also important to see at which M this convergence oc-

curs, so as not to unnecessarily add to the computational

overhead (recall that the computational load scales linearly

with the number of slices M ).

Figure 2 shows the luminosity of the collision between

the electron and ion beams in the proposed MEIC as a func-

tion of the number of slices M , executed with our new

code. The panel (a) shows a simulation of the nominal

MEIC parameters (with β∗

x = 10 cm and β∗

y = 2 cm at the

IP) for which the geometric reduction in luminosity due to

the hourglass effect is minimal, only about 2.5%, with the

longitudinal rms size σ−

z = 0.75 cm and σ+
z = 1 cm. The

panel (b) shows a simulation of the same set of parame-

ters, only with the longitudinal rms size of each beam six

times the nominal value, for which the reduction due to the

hourglass effect is significant, about 55%. The hourglass

effect becomes important when the rms size of the bunches

becomes of the order of the focusing at the IP (β∗).

The differences between the M = 1 and M > 1 results
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Figure 2: Computed luminosities for different number of

slices M with N = 40000 particles. Panel (a): The nom-

inal MEIC parameters where the reduction factor due to

hourglass is only 2.5% (the first point from the left on the

red curve in Fig. 1). Panel (b): The same MEIC nominal

parameters, except the beam bunches are six times longer,

with the hourglass reduction factor of 55% (the sixth point

from the left on the red curve in Fig. 1).

are due to the hourglass effect. Simulations with M = 2
consistently underestimate the values to which the luminos-

ity converges as the number of slices is increased. For cases

where the hourglass effect is either minimal, as in Fig. 2(a),

or moderate, simulations with M ≥ 3 yield virtually the

same results, indicating rapid algorithm convergence. This

is an indication that the relevant physics of the geometric

reduction in luminosity due to the hourglass effect is accu-

rately captured with as few as three slices. However, as the

rms longitudinal size of the bunches is further increased,

and the hourglass effect becomes severe, it is expected that

more slices are needed to accurately model the hourglass

reduction. This is observed in Fig. 2(b), where M = 3
slices is no longer in perfect agreement with M > 3 cases,

as was the case with the bunches which are one sixth the

size (Figs. 2(a)).

PARALLELIZATION

The sheer amount of computation involved in tracking

and colliding beams over 107 − 109 collisions is daunting.

In serial, the problem would simply be computationally

intractable, which is why the use of sophisticated, finely-

tuned algorithms running on massively-parallel platforms

is required. The new code is ideally suited for the Single

Instruction Multiple Data (SIMD) concept that makes GPU

computation so powerful—both particle tracking and beam

collision are processes which execute the same set of com-

putations without the need for communication.

We implemented the new beam-beam algorithm on a

hybrid CPU/GPU platform, taking the full advantage of

the highly repetitive nature of the calculations. More pre-

cisely, one portion of the code—the setup, initialization

and I/O—runs on the traditional CPU platform, while com-

putationally intensive parts—particle tracking and beam

collisions—execute on a single or several GPU devices.

This speeds up the most time-consuming calculations by

a few orders of magnitude, leading to substantial overall

speedup. We used NVIDIA Tesla M2090 consisting of 512

cores. Each CPU hosts 4 GPU devices.

The tracking algorithm results in a maximum speedup

(CPU time/GPU time) on a single GPU device of over 280

obtained after a few thousand turns where the overhead

of the initial I/O becomes negligible. The speedup scales

nearly linearly with multiple GPU devices.

We are currently benchmarking the GPU code in the full

collision mode. Our preliminary results are encouraging

and will be soon reported in a publication.

FUTURE WORK

A number of additional features are being developed and

will be included in the next iteration. Amongst these are

synchrotron damping, cooling of the proton beam by a low

energy electron beam and intrabeam scattering. Finally, we

are going to use the new code for long-term simulations of

the MEIC.
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