Keyword: monitoring
Paper Title Other Keywords Page
MOPMR021 Lifetime and Operational Criteria of Proton Beam Instrumentation in the ESS Target Station electron, proton, radiation, target 276
 
  • Y. Lee, T.J. Shea, C.A. Thomas
    ESS, Lund, Sweden
 
  At the European Spallation Source, a 2 GeV, 5 MW proton beam will be delivered from a superconducting linear accelerator to target at a 4% duty factor, which poses demanding requirements on target station design. To tune the beam delivery system and to protect the target station components, the current density, the halo distribution, and the position of the proton beam shall be measured. To provide this functionality, a suite of beam monitoring devices will be deployed in the target monolith, including a multi-wire grid for the beam profile monitoring, thermo-couple assemblies and secondary emission blades for aperture monitoring, and a beam footprint imaging system consisting of optical components and luminescent coatings. Since these devices are exposed to particles that deposit energy and cause a high rate of radiation damage, it is a significant challenge to ensure full functionality. In this paper, material selection, lifetime estimates and operational criteria for these beam-monitoring devices are presented. A number of particle transport and finite-element simulations are performed for analyses, and an empirical validation plan is presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR032 Measurement of Beam Size with a SR Interferometer in TPS radiation, synchrotron, synchrotron-radiation, shielding 313
 
  • M.L. Chen, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, C.W. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) has operated since 2015. An optical diagnostic beamline is constructed in section 40 of TPS for the diagnosis of the properties of the electron beam. One instrument at this beamline is a synchrotron radiation interferometer (SRI), which is operated to monitor the beam size. In this paper, we present the beamline structure and recent results of measurement with the SR interferometer.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW017 Performance of the Beam Position Monitor System in Solaris Synchrotron storage-ring, lattice, synchrotron, quadrupole 432
 
  • A. Kisiel, L.J. Dudek, P.P. Goryl, W.T. Kitka, M.P. Kopec, A.I. Wawrzyniak, L. Żytniak
    Solaris, Kraków, Poland
 
  The Beam Position Monitor (BPM) system in the Solaris National Synchrotron Radiation Centre consists of 8 striplines along a linear accelerator and a transfer line and 36 buttons around the storage ring. The beam position measurement in the linac is handled by 15 cm quarter wave directional striplines connected to Libera Single Pass E modules as readout devices. The circulating beam in the storage ring is monitored by set of 45 degree diagonal buttons in two geometries connected to Libera Brilliance+ devices. Properly configured BPM setup allows for direct measurement of the beam position stability, closed orbit, current of single train and the stored beam. Moreover, the slow acquisition and turn-by-turn data stream from BPMs in the storage ring are used for automatic orbit correction, computing beam lifetime on each button, measuring an orbit response, the beta function and other physical parameters of the electron beam. In order to improve the measurement reliability the beam based alignment has been performed. Within the presentation the performance of the BPM system in Solaris during commissioning phase will be discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY030 SOSDAQ - a Data Acquisition and Slow Control System for the Swiss Light Source 500 MHz 65 Kw Solid State Power Amplifier controls, distributed, network, interface 560
 
  • M.A. Gaspar, T. Garvey
    PSI, Villigen PSI, Switzerland
 
  The Paul Scherrer Institut has developed a compact 500 MHz - 65 kW solid state RF power amplifier intended for applications in booster and storage rings of modern synchrotron light sources. The solid state power amplifier is presently under evaluation in the booster ring of the Swiss Light Source (SLS). In order to achieve this high RF output power levels using the present state of the art solid state technology, a large number of power amplifier modules, each one including its own power amplifier module and a local monitoring and control, are combined, configuring a complete distributed system. In order to monitor and control this large distributed system, we developed a specific data acquisition, monitoring and control system, called SOSDAQ. This system offers flexibility for efficiency optimization, easy addition and replacement of components, easy configuration for different types of power and efficiency requirements, among other features. We will discuss about the control system architecture, the software and the hardware implementation, and the results obtained.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOR008 Beam Induced RF Heating in LHC in 2015 impedance, operation, injection, vacuum 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J. F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW007 Parts Tracking for Fabrication, Installation and Maintenance at the European XFEL status, database, operation, controls 719
 
  • L. Hagge, J.A. Dammann, A. Frank, J. Kreutzkamp, D. Käfer, B. List, S. Rohwedder
    DESY, Hamburg, Germany
 
  DESY has established a powerful configuration management solution for the construction of the European XFEL. It tracks the status and location of accelerator components during fabrication and installation, and it contains workflows for reviews, change control and the handling of non-conformities. It provides extensive progress monitoring and reporting for the production and installation of accelerator components. This way, it collects on-the-fly a comprehensive documentation of the accelerator, which serves as a thorough foundation for asset and maintenance management during the upcoming operation. The poster gives an overview of the application and summarizes its status, benefits and experience.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB016 Vertical Test Results of Nitrogen Doped SRF Cavities at KEK cavity, vacuum, SRF, operation 2154
 
  • K. Umemori, H. Inoue, E. Kako, T. Konomi, T. Kubo, H. Sakai, H. Shimizu, M. Yamanaka
    KEK, Ibaraki, Japan
  • H. Hara, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
 
  Recently Nitrogen doping(N-doping) technique was proposed and drastic improvements of Q-values were reported. Since high-Q operation of SRF cavities are very attractive for CW machine, we started investigation on performance of Nitrogen doped SRF cavities. Nitrogen doping systems were prepared on two vacuum furnaces, which have been used for annealing of SRF cavities. Two fine grain single cell cavities have been used for the study. After 800 degree, 3 hours annealing, N-doping were carried out under several Pa of Nitrogen pressure and followed by post annealing. Three kind of different conditions, pressure and duration time, were attempted. After applying EP-2, cavity performances were evaluated by vertical tests. Against our expectations, we observed lower Q-values, at every measurements, than those measured without N-doping. In this presentation, we describe details about N-doping system and parameters and results obtained by vertical tests. Some discussions are also given against our results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR050 Development of Web-based User Interface for Beam Status Monitoring of 100-MeV Proton Linac interface, controls, EPICS, database 2389
 
  • Y.G. Song, J.H. Kim
    KAERI, Gyeongbuk, Republic of Korea
  • Y.-S. Cho, H.-J. Kwon
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
The goal of web-based user interface is to create a user interface which makes it easy and efficient to operate the KOMAC facility. A web-based user interface for a beam status monitoring of the KOMAC 100 MeV linac and beam lines has been developed with accessing Experimental Physics and Industrial Control System (EPICS) Channel Access (CA) protocol and relational database. Web service is combined with EPICS CA protocol. As a result, a beam operator and user can monitor the beam status in real time by using a web browser of remote PC or wireless device. In this paper, we are describing the implementation of web-based user interface for a beam status monitoring of the KOMAC proton linac.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR018 Position Monitoring System for HL-LHC Crab Cavities cavity, vacuum, radiation, alignment 2704
 
  • M. Sosin, T. Dijoud, H. Mainaud Durand
    CERN, Geneva, Switzerland
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  The high luminosity upgrade for the LHC at CERN (HL-LHC project) will extend the discovery potential of the LHC by a factor 10. It relies on key innovative technologies like superconducting cavities for beam rotation, named 'crab cavities'. Two crab cavities will be hosted in a superconducting cryostat working at a cold (<3 K). The position of each cavity will be monitored during the cool-down and the operation in order to comply with the tight alignment tolerances: the misalignment of a cavity axis w.r.t. the other will have to be lower than 0.5 mm and each cavity roll w.r.t. the cryostat axis will have to be lower than 1 mrad. Moreover, the monitoring system will have to be radiation hard (up to 10 MGy) and maintenance free. We propose a solution based on the Frequency Scanning Interferometry to provide the position monitoring of the crab cavities. This paper describes the design and study of such a solution, including the engineering approach, the issues encountered and the lessons learnt.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR023 Radiation Shielding Considerations for CEPC-SPPC radiation, shielding, synchrotron-radiation, synchrotron 2722
 
  • Z.J. Ma, Y.D. Ding, N. Li, Q.B. Wang, M.Y. Yan, Q.J. Zhang
    IHEP, Beijing, People's Republic of China
 
  A planned project CEPC-SPPC is under-researched by IHEP, CAS, China. Due to its big circumference and high energy, the radiation shielding issues should be treated more serious than ever whether for the machine itself or the worker and the public. In this paper, we briefly introduce the configurations and parameters of the machine, the tools and principle used in the radiation shielding design, and discuss the preliminary result for the shielding of main tunnel and the synchrotron radia-tion. Some radiation protection issues are listed to be resolved next. All the aspects presented should be dis-cussed and verified, any other unmentioned radiation protection problems will be excavated in the future.
CEPC: Circular Electron-Positron Collider
SPPC: Super Proton-Proton Collider
IHEP: Institute of High Energy Physics
CAS: Chinese Academy of Sciences
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR024 HPGe Detector Application on Monitoring Environmental Samples around the Accelerator detector, simulation, photon, software 2725
 
  • Y.D. Ding, Z.J. Ma, Q.B. Wang, M.Y. Yan, Q.J. Zhang
    IHEP, Bejing, People's Republic of China
 
  Massive experimental works are aimed to clarify the structure of detector including CT with X ray machine, determining the thickness of dead layer with collimating radioactive source and ect. Measuring structure and size of the detector by X-ray computed tomography, measur-ing the dead layer thickness of detector's front surface and side surface though collimated point source method, scanning the dead layer distribution of the entire detec-tor. A finite element analysis software name CST is used to simulate electric field distribution of the HPGe detec-tor. Calibrating the efficiency of HPGe detector by means of point source and soil standard matter, A Monte Carlo software called MCNP is used to simulate detector effi-ciency preliminarily according to the structure parame-ters of the factory, optimizing and verifying simulated results on the basis of measured results. At last, the com-parison of the simulated and the experimental data showed very good agreement.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR049 Jupyterhub at the ESS. An Interactive Python Computing Environment for Scientists and Engineers software, controls, site, simulation 2778
 
  • L. Fernández, R. Andersson, H. Hagenrud, T. Korhonen, E. Laface
    ESS, Lund, Sweden
  • B. Zupanc
    Cosylab, Ljubljana, Slovenia
 
  The European Spallation Source will be the world's most powerful neutron source, once its construction is finished. In order to design, build and operate this complex machine many different software components and frameworks will be needed. One of those is Jupyterhub, a scripting environment for data analysis, scientific computing and physics simulations. Jupyterhub is a multiuser version of the IPython notebook (Jupyter) that can be deployed in a centralized server; It provides centralized authentication, centralized deployment, promotes collaboration and provides access to the most advanced libraries for data cleaning and transformation, simulation and statistics. At the Integrated Controls System Division a customized version of Jupyterhub was deployed, providing sandboxed environments to users using Docker containers. Among other characteristics of this installation we can find: clustering, load balancing, A/B testing, Amazon Web Services integration, nbviewer and OpenXAL integration.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY035 The Real-time Remote Monitoring of Electric Power System Condition at NSRRC real-time, high-voltage, status, operation 3737
 
  • T.-S. Ueng, J.-C. Chang, C.S. Chen, Y.F. Chiu, K.C. Kuo, Y.-C. Lin
    NSRRC, Hsinchu, Taiwan
 
  For monitoring effectively the real time status of NSRRC's electric power system, an electric power quality monitoring system has been set up to measure the power quality of high voltage feeders, which includes the voltage/current phase, the variation of frequency, voltage sags and swells. The measured result will be analyzed and used to further improve the performance of power system. Furthermore, a partial discharge monitoring system was also installed to monitor the phenomena of electric discharges. Using the ultra high frequency discharge sensor, the magnitude and the pulse-per-second of discharge are measured and analysed. It allows the electrical engineers to diagnose the degradation of insulation of the electric equipment beforehand to reduce the power failure.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMY037 Realization of a System to Monitor Water Quality and for Cooling a TPS KEKB Superconducting Cavity CPL/HOM HOM, cavity, superconducting-cavity, operation 3740
 
  • L.J. Chen, F.-Y. Chang, L.-H. Chang, M.H. Chang, PY. Chen, F.-T. Chung, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, M.H. Tsai, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a 3GeV synchrotron accelerator and is built next to the present Taiwan Light Source (TLS) [1]. The stability of electron beam is pro-vided by Low-level RF control system for keeping Gap voltage and phase to be constant[2]. The Gap voltage for accelerating electron beam is provided by KEKB super-conducting cavity. During routine operation of the super-conducting cavity, water cooling system is necessary for stabilize the accessory components of the cavity to avoid damage or abnormal of the system. This article would introduce the realization and integration of the water quality monitoring and cooling system for TPS supercon-ducting cavity input coupler and high order mode damper (CPL/HOM). Brief description is shown in first section. The detail architecture and function of the designed signal monitoring system will be discussed in 2nd section. The 3rd section will have further description of interlocks for system protection. The final section would summarize the water quality monitoring and cooling system in this article.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMY037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY009 Control System of the C-Band Standing-Wave Accelerator for the Medical Application operation, linac, controls, interface 4104
 
  • H. Lim, D.H. Jeong, M.W. Lee, M.J. Lee, S.W. Shin, J. Yi
    Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
 
  A control system has been developed for the 6 MeV C-band accelerator which will be used for the medical application. It is built in the PXI platform and implemented for the operation and the monitoring of sub-components by the LabView programs. To communicate with components in the RF noise environment and to send/store the various monitoring data to the storage server, the interface based on Ethernet is used and it allows the real-time monitoring and the safe and fast feed-back system. In order to achieve the beam stability < 3.3 %, the automatic frequency controller for the magnetron is implemented by the feed-back scheme using the frequency waveform data and the constant cavity temperature is controlled by the real-time monitoring and interlock. In addition, the dose rate and flatness are controlled by a monitor chamber. The interlock system is also designed to protect the patients and also linac components against the improper operation, largely radiation, the misbehavior of monitoring parameters, etc. The architecture and main features are described and operation results are reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY010 EPICS Integration of Simple Network Management Protocol for RISP EPICS, controls, network, Ethernet 4107
 
  • M.J. Park, H. Jang, S. Lee, C.W. Son, H.J. Son
    IBS, Daejeon, Republic of Korea
  • S.H. Nam
    Korea University, Seoul, Republic of Korea
 
  The Rare Isotope Science Project (RISP) Control System is comprised of ethernet-based devices and equipment. Control system is based on Experimental Physics and Industrial Control System (EPICS) Framework, known as a distributed control system through network. So, we need a way for integrating ethernet-based devices into EPICS Framework. Most of these devices support Simple Network Management Protocol (SNMP). SNMP is based on the manager and agent model and it is similar to EPICS Channel Access (CA) protocol. Therefore, SNMP helps to develop a unified network-based control system with EPICS. In this paper, we will show the network device monitoring system RAON customized SNMP integration into EPICS.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY039 Development of an Analysis Framework for the Beam Instrumentation Interface to the Beam Interlock System at ESS interface, neutron, electronics, proton 4185
 
  • R. Andersson, E. Bargalló, A. Nordt
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is currently being built in Lund, Sweden. When it is fully operational in 2025, it will host the most powerful neutron spallation facility in the world. The high-power proton beam needs to be carefully controlled and monitored in order to avoid possible damage to the sensitive equipment. Some of the most critical inputs to the beam interlock system are the beam monitors, delivered by the beam instrumentation group at ESS. In case local protection systems along the accelerator do not foresee a loss of beam, the beam monitors are the last line of defence to stop the proton beam and avoid equipment damage and consecutive downtime. It is essential for the protection of the machine that the whole beam permit signal chain, from monitors to actuators, fulfills strict reliability requirements. This paper describes the role and importance of the beam monitors to correctly measure beam losses and interface with the beam interlock system. It also describes one of several reliability studies that are performed to develop appropriate interfaces in the beam permit signal chain.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)