Top-Up Operation in Light Sources

H. Ohkuma, JASRI/SPring-8

EPAC08, Magazzini del cotone, Genoa, Italy / June 23, 2008

SPring.

Merits of Top-up

- Short beam lifetime can be compensated.
- Variety of beam filling can be possible. Especially, high current bunch in hybrid filling mode.
- Photon source becomes effectively more brilliant.
- User experiments are not interrupted by beam refill.
- Photon beam becomes stable owing to constant heat load and thermal equilibrium of X-ray beam optics.
- Experimental data is free from normalization by current.

History of Top-up operation

• In 1990, demonstration of 1GeV SORTEC

S. Nakamura et al., EPAC90, p.472

• In 1996, TLS tested Top-up Operation in 194 -200 mA

T. S. Ueng, et al., EPAC96, p.2477

History of Top-up operation (Con't)

Top-up in user time

- In 2001, APS started top-up.
- In 2001, SLS started top-up in beamline commissioning phase.
- In 2003, NewSUBARU started top-up, and in 2004, SPring-8 started.
- In 2005, TLS started top-up.

Successes at these facilities

Top-up is standard operation mode in light sources.

Top-up Status at routinely operated sources

Facilty	Energy [GeV]	Current [mA]	Emittance [nm.mrad]	Injector	Injection Efficiency	Current Stability	Operatinal Status	Top-up Status
APS	7	102	3	7GeV Boost.	80 - 100%	±0.4%	Oper. (1996)	Oper. (2001)
SLS	2.4 (2.7)	400	5	2.7GeV Boost.	90 - 100%	0.3%	Oper. (2001)	Oper. (2001)
New SUBARU	1 (1.5)	220 (350)	67	1GeV Li.	~80%	0.6%	Oper. (2000)	Oper. (2003)
SPring-8	8	99.8	3.2	8GeV Boost.	>80%	0.03%	Oper. (1997)	Oper. (2004)
TLS	1.5	300 (360)	25	1.5GeV Boost.	>70%	±0.2%	Oper. (1993)	Oper. (2005)

Top-up at APS

Multi-bunch, 324 bunches (lifetime: 70 hours) : No Top-up **Top-up in two filling mode** 24 bunches Lifetime is 8 hours **Injection interval : 2 min. Injection efficiency : ~100 %** 8 trains of 7 small bunches + one 16 mA bunch Lifetime is 5.5 hours **Injection interval: 1 min. Injection efficiency : 80 % (because of high chromaticities)** Current stability : ± 0.4mA at 100mA (±0.4%) **Tracking Simulation for radiation safety Interlocks:**

- injection with zero current stored
- energy mismatch between injector and storage ring.

L. Emery and M. Borland, PAC99, p.2319

Top-up at SLS

- Booster (in same tunnel of Storage Ring)
 - 100 MeV to 2.7 GeV @ 3 Hz
 - Emittance : 9 nm.rad
 - Circumference : 270 m
- Injection section
 - 11 m magnet free straight
 - Four Identical Bumps (Mirror Symmetry)
- Storage Ring
 - 2.4 (2.7) GeV, 400 mA
 - Emittance : 5 nm.rad
 - Circumference : 288 m

SPring. 8

Top-up at SLS (Con't)

A. Lüdeke. at Diamond talk (22/11/07)

Top-up at SPring-8 and NewSUBARU

Top-up at SPring-8

Filling Mode & Lifetime in 2007

	bunch current	lifetime	
Multi-bunch (160 bunch-train x 12)	0.05 mA	~ 200 hr	
203 bunches	0.5 mA	25 ~ 30 hr	
11 bunch-train x 29	0.3 mA	35 ~ 50 hr	
1/7-filling + <mark>5 single bunches</mark>	2.8 mA (single)	18 ~ 25 hr	
1/14-filling + 12 single bunches	1.6 mA (single)		
2/29-filling + 26 single bunches	1.4 mA (single)		
4/58-filling + 53 single bunches	1.0 mA (single)		

Multi-bunch : 17.0 %, Several-bunch : 51.9%, Hybrid : 31.1%

<u>Top-up at SPring-8</u>

(Improvement of current stability)

- Fixed interval (~ Oct. 2007)
 - Interval 1 min (several, hybrid) or 5 min (multi-bunch)
 - Current stability 0.1 %
- Variable interval (Nov. 2007 ~)
 - Interval depending on lifetime 20 sec ~ 2 min.
 - Current stability 0.03 % (30 µA/one shot)

Top-up at TLS

- Upgrade booster from 1.3GeV to 1.5 GeV for top-up operation in 2000.
 - 200 mA top-up started in 2005.
 - Now, 300 mA top-up for user experiments.

Top-up Status (tested or planning)

	Energy	Current	Emittance	Intertor	Injection	Current	Operatinal	Ton on States
Facility	[GeV]	[mA]	[nm.mrad]	Injector	Efficiency	Stability	Status	Top-up Status
UVSOR	0.75	350	27	0.75GeV Boost.	>80%	<0.6%	Oper. (1983)	Tested
PF	2.5	450	35	2.5GeV Li.	70 - 80%	±0.1%	Oper. (1983)	Tested
NSRL	0.8	300	160	200MeV Li.			Oper. (1991)	Planned
ESRF	6	200	3.7	6GeV Boost.	70%		Oper. (1993)	Tested
ALS	1~1.9	400	6.3	1.9GeV Boost.	>90%		Oper. (1993)	Planned
ELETTRA	2/2.4	330/15 0	7	2.5GeV Boost.	>95%	0.3%	Oper. (1994)	Tested
PLS	2.5	200	10.3	2.5GeV Li.	60%	<1%	Oper. (1995)	Planned (2010)
BESSY-II	1.72	300	6.1	1.72GeV Boost.	>90%	0.1%	Oper. (1999)	Tested
CLS	2.9	250	18	2.9GeV Boost.			Oper. (2003)	Tested
SPEAR-III	3	100 - 500	12	3GeV Boost	75 - 90%	1% - 0.1%	Oper. (2004)	Planned (2008)
Diamond	3	175 (300)	2.7	3GeV Boost.	90 - 95%	0.3%	Oper. (2007)	Tested
SOLEIL	2.75	250 (500)	3.74	2.75GeV Boost.	90 - 100%	0.1% - 1%	Oper. (2007)	Tested
ASP	3.0	200	7-16	3GeV Boost.	~ 90%		Oper. (2007)	Tested

14

Top-up Status (Con't)

Facilty	Energy [GeV]	Current [mA]	Emittance [nm.mrad]	Injector	Injection Efficiency	Current Stability	Operatinal Status	Top-up Status
SSRF	3.0	300	3.9	3GeV Boost.			Commis.	Tested
ВЕРС-П	2.5	250	76	1.89GeV Li.	50 - 60%		Commis.	Planned
PETRA-III	6	100 (200)	1.0	6GeV Boost.	>80%	0.1%	Constru.	Planned (2010)
ALBA	3	250 (400)	4.5	3GeV Boost.	>90%		Constru.	Planned (2010)
NSLS-II	3	500	2.1	3GeV Boost.	>90%	1%	Planned	Planned
TPS	3	400	1.7	3GeV Boost,	>90%	0.2%	Planned	Planned
CANDLE	3	350	8.4	3GeV Boost.			Planned	Planned

Top-up at Existing light sources

UVSOR-II : Booster Upgrade (650 MeV to 750MeV) . Plan in 2008.

PF : Top-up at single bunch in 2007.
ESRF : Injection with Front-end open from 2003.
Elettra : New full energy booster was constructed. Plan in 2008 or 2009.
ALS : Booster upgrade (1.5GeV to 1.95 GeV)
BESSY-II : Replacement of booster injector

(Microtron to Linac)

PLS : Plan in 2010.

SPEAR-III : plan in 2008.

DELTA, BEPC-II, and CLS have plan of top-up.

SSRF : 100 mA ± 0.5 mA top-up operation daily.

Diamond: 175 mA top-up is tested. Stability is typically 0.3%.

Top-up : under construction , planning

- **PETRA-III :** plan in 2010.
- **ALBA : Booster emittance is 9 nm.rad.**
- **TPS : Booster emittance is 4.29nm.rad.**
- NSLS-II : Booster emittance is 11.5 nm.rad (in same tunnel of storage ring) or 26.6 nm.rad (in separated building). CANDLE : low-emittance booster.

SAGA-LS, LNLS, NSRC (Siam), Indus-II, SESAME have no plan of top-up, because of no full energy injector.

Injection Efficiency

- Injection efficiency is very important for radiation safety.
 Electrons lost at insertion devices will cause demagnetization of undulator magnets.
 - Low-emittance injector to reduce the beam loss. (High injection efficiency)
 - **Conventional booster**, ~100nm.rad : a beam collimation system in bean transport line is effective.

To keep high injection efficiency,

- Beam Collimation in Transport Line
- Low Chromaticity Operation
- Beta-Distortion Correction
- Stability of Injection Orbit

Beam Collimation in Transport Line at SPring-8

• Injection beam position can become closer to storage ring.

SPring. 8

SPring- 8

Reduction of Chromaticity

- Low chromaticity-operation is effective for the reduction of the injection beam loss.
- Bunch-by-bunch feedback system assures the stable operation under the lower chromaticity.
- Combining the low chromaticity and the collimation system, the high injection efficiency could be achieved with all the gaps of IDs closed.

SPring-8

Suppression of Stored beam oscillation

Origins of stored beam oscillation.

- Injection bump magnet errors.
- Nonlinearity (sextupole) within an injection bump orbit.

Suppression of Stored beam at SPring-8

- Non-Similarity of Magnetic Field of Bump Magnets
- New Magnets with Non-Metallic End-Plates to Reduce Eddy Current

Suppressing Oscillation of Stored Beam at Top-up injection

Remote Tilt-Control of Bump Magnets for Suppressing Vertical Oscillation.

SPring-8

Result of Suppressing Oscillation

Correction of Residual Oscillation

• Feedforward Correction with Pulsed Corrector Magnets (Arbitrary Waveform Generator + Amplifier)

<u>Horizontal</u>

Vertical

New scheme for beam injection

(proposed and tested at PF-KEK)

- Center field is zero, and nonzero elsewhere.
- Stored beam is not kicked, but injected beam is kicked.

K. Harada et al., PRST-AB, 10(2007)123501

27

Impact on user experiments

- Increase in time averaged photon flux: which leads to a high counting statistic measurement due to constantly high beam intensity. Especially for the single bunch experiment a few times higher intensity were provided, because a various beam filling for the use of a single bunch has electrons with shorter lifetime. In addition, a continuous operation without shut down for beam refill excluded not only a time loss for experiment but also a time loss for the warm-up of optics.
- Current stability: The minimized current fluctuation of a stored beam leads to a constant heat load for optics including monochromators, which enables the achievement of a virtually absolute measurement with intensity monitor free. The constant flux improved the accuracy and reliability in spectroscopy experiments.
- No interruption by beam refilling : The operation without shut down for electron refilling allows us planning of long time stable measurement.

- Future of storage ring-based light sources go toward an ultra low-emittance and a short bunch.
- In these light sources, a lifetime of stored electron beam will be extremely short.
- Top-up operation will become increasingly important.
- It will be necessary to use a stable, high charged, and very low-emittance injection beam.

• From this point of view, a beam transport line from the C-band linac for the XFEL has been constructed for beam injection to the storage ring at SPring-8.

Beam Transport line to Storage Ring from C-band linac of XFEL/SPring-8

C-band lina

emittance: 0.06nm.rad @ 1nC/bunch dp/p = 4×10^{-5} bunch length < 100fs

SPring-8

Transport

XFEL完成予想図 H18.12.4 作成

SPring- 8

Summary

- Five facilities is routinely operated with top-up operation for user experiment.
- At many existing and new facilities, the top-up operation is tested and planned.
- Current stability is realized within 10⁻³ ~10⁻⁴.
- High Injection efficiency is very important for demagnetization of ID's magnets and radiation safety.
- Suppression of stored beam oscillation is very important for stable user experiments without injection-timing signal for data masking.
- There are many impact on user experiments by the stable top-up operation.

Thanks to

L. Emery and M. Borland (APS), L. Rivkin and A. Luedeke (SLS), Y. Shoji (NewSUBRU), G-H. Luo (NSRRC), B. Podobedov and S. Krinsky(NSLS), M. Katoh (UVSOR), Y. Kobayashi (PF), L. Hardy (ESRF), E. Karantzoulis (Elettra), H-S. Kang(PLS), R. Farias(LNLS), P. Kuske (BESSY-II), R. Hettel (SPEAR-III), Koda (SAGA), G. Singh (Indus-II), P. Klysubun (NSRC), R. Bartolini (Diamond), A.Nadji (SOLEIL), Z. Zhao (SSRF), Q. Qin (BEPC-II), K. Balewski (PETRA-III), D. Einfeld(ALBA), H. Tarawneh (SESAME), M. Takao and K. Soutome (SPring-8) Thank you for your attention.