

Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

<u>Coherent Synchrotron Radiation and</u> <u>Short Bunches in Electron Storage Rings</u>

G. Wüstefeld, BESSY, Berlin (Germany)

content

- 1. Introduction
- 2. Low alpha optics for short bunches
- 3. Coherent radiation
- 4. More on short bunches

two example electron rings:

MLS= Metrology Light Source, owned by German PTB

superposition of radiation

number of electrons N

*σ always rms!

superposition of radiation

total / incoherent power = Power(λ) / ($p_{\lambda}N$) = 1 + N g_{\lambda} , N~10⁸

Scheme of CSR-bunch interaction

BESSY II low alpha optics

the machine optics

→ relation: (
$$f_s$$
, Δrf) \leftarrow → (α , $\Delta p/p$)

$$\Rightarrow \alpha_0 \sim f_s^2$$
 and $\sigma \sim f_s$

BESSY II main parameters

optics parameter	reg.user optics	low alpha optics
nat. emitt / nmrad	6	30
synchr. freq. / kHz	7.5	7.5 1.75 0.35
mom. com. factor α	7.2E-4	7.2E-4 4E-5 1.6E-6
nat. bunch length rms /ps	12	12 3 0.7

low alpha at fs=1.75kHz : very stable machine operation, good life time 20 mA and 20 hours

Tuning of non. lin. synchrotron frequency & α

synchrotron frequency fs as a function of Δrf frequency

Observation of Simultaneous Alpha Buckets

fixed points:

$$\sin \phi = 0, \ \alpha \ \Delta p/p = 0 \quad \stackrel{\wedge}{=} f_s = 0$$

MLS measurement:

Coherent radiation

THz detector signal versus ring current

Low alpha, 630 MeV: the THz signal growth stronger than the ring current, a clear indication of coherent radiation

THz signal versus beam energy 100 – 600 MeV, 55mA at 250 kV

less THz power than expected

- intra beam scattering
- ion trapping
- CSR beam excitation, slow damping

Stable THz Signals at MLS

E=630MeV, I=19mA, HV=200 kV, fs=10kHz, InSb-detector

power spectrum analysis

BESSY II user optics, single bunch 15 mA

power spectra by Fourier transform spectroscopy

power spectrum analysis

0.1THz 1THz BRILLIANCE W/mm/sr/(0.1% bdw) 6-01 6-01 7-01 N_{e} ×form factor, sub-ps bunches user optics burstig CSR, SB 15 mA - 870 fs, 140 nA 700 fs, 300 nA incoherent radiation low alpha stable .2 ps, 140 nA 250 mA, user optics CSR, 18 mA Gaussian fit 10⁴ 10³ 5 10 wave number / cm -1 black body, 1200 K, 10 mm^2 10-14 sub-ps beam diagnostics 10 100 1000 10000 at low currents wave number cm⁻¹

G. Wüstefeld, BESSY, Short Bunches & CSR, EPAC'08, June 23rd. 2008

brilliance of the BESSY II THz spectrum

BESSY II: More on short bunches

bursting threshold

current dependent bursting in time domain / user optics

option for short bunches & more currents

rf-module in one of the ID-straights

Limits of ultra short bunches:

small / low energy rings

- ion trapping
- slow damping of
 CSR / impedance heating
 intra beam scattering

- power supply noise
- coupling of long. trans. planes
- quantum emission

Conclusion:

the low alpha optics extends the usage of storage rings to intense THz and short, Pico second X-ray pulses

coherent THz radiation as a diagnostics tool delivers sensitive and new information on beam dynamics

presently achieved results without any larger hardware investment

Acknowledgment

Thanks to all cooperators on this subject, in particular to

the MLS team for making recent, unpublished results available

the MLS & BESSY colleagues for fruitful cooperation and discussion and many results presented here:
 M. Abo-Bakr, J. Feikes, K. Holldack, M. v Hartrott, P. Kuske, U. Schade A. Hoehl, R. Klein, R. Müller, G. Ulm (PTB)
 H.-W. Hübers (DLR) and colleagues from
 ALS, ANKA, BNL, DAΦNE, DESY, KSR, NewSUBARU, SLAC, UVSOR