
IMPACT OF BETATRON MOTION ON PATH LENGTHENING AND
MOMENTUM APERTURE IN A STORAGE RING

M. Takao∗, JASRI/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

INTRODUCTION
In the beam dynamics of an electron storage ring the am-

plitude of the betatron motion can become so large as not
to be ignored, e.g. Touschek scattered particle or injection
beam. Specifically the path lengthening by the finite ampli-
tude betatron motion can give a serious influence on beam
dynamics. By means of the synchrotron motion, the vari-
ation of the path lengthening is converted into the energy
deviation, so that the momentum deviation is enhanced by
the impact of the betatron motion, which inevitably effects
on the momentum acceptance.

It is well known that the finite amplitude of the beta-
tron motion gives rise to the path lengthening of the cen-
tral trajectory [1, 2, 3, 4]. The resulting formula of the
path lengthening is simply represented by the product of
the invariant amplitude and the chromaticity. In this paper
the path lengthening by a finite amplitude betatron motion
is derived by means of the canonical perturbation method
[5, 6]. Through this derivation we elucidate that the path
lengthening is produced by the central orbit shift by the
non-linear betatron motion owing to the sextupole magnet
potential.

Using the formula, we discuss the impact of the finite
amplitude betatron motion on momentum aperture in a
Touschek effect. It has been observed that the momen-
tum acceptance becomes smaller as the chromaticity grows
larger. Furthermore, the decrease of the momentum accep-
tance by the horizontal chromaticity growth is lager than
that by the vertical. This difference can be explained by
the impact of the finite amplitude betatron motion on the
momentum aperture, since the scattered particle oscillates
initially in a horizontal plane, and then the path lengthening
is sensitive to the horizontal chromaticity.

PATH LENGTHENING BY FINITE
AMPLITUDE BETATRON MOTION

Here we consider the betatron motion with a sextupole
perturbation in two degree of freedom. The Hamiltonian
H , describing the motion of a particle in a circular acceler-
ator, is given by
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where s is the path length along the reference orbit. In ad-
dition, Kx is the horizontal curvature, and g0,1’s are the

∗ takao@spring8.or.jp

field strengths of quadrupole and sextupole magnets, re-
spectively. Note that the momenta px, y and g0,1’s are nor-
malized by the nominal momentum p0.

The Hamiltonian consisting of the quadratic terms de-
scribes the linear betatron motion, which is represented in
terms of the action-angle variables (Jz, φz) for z = x, y as

z (s) =
√

2Jzβz (s) cos φz, (2)

where βz is the betatron function. The cubic terms are
treated as a perturbation potential, which generate non-
linear oscillation in betatron motion. Although the cen-
tral trajectory of the linear betatron motion is properly
〈x (s)〉 = 0, where the brackets 〈·〉 represents the average
over the angle variable, the perturbation potential gives the
shift of the central trajectory owing to the non-linear oscil-
lation. The integral representation is derived by using the
canonical perturbation method [5, 6],
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Here αx,y and γx,y are the Twiss parameters, and νx the
horizontal betatron tune, and Ψx (s̄, s) = ψx(s̄)−ψx(s)−
πνx with ψx(s) =

∫ s

s0
ds̄/βx (s̄). Equation (3) explicitly

implies that the shift of the central orbit is produced by the
sextupole potential as well as the higher order terms of the
curvature Kx.

Up to the second order the variation of the average path
length due to the betatron motion is approximated as
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ds
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Inserting the representation of the barycenter of the beta-
tron motion (3) into the linear term in the above equation,
we obtain the variation of the average path length due to
the shift of the central orbit

∫ C
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dsKx (s) 〈x (s)〉 =
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In the above derivation of the path lengthening by the finite
amplitude betatron oscillation, we use the integral repre-
sentation of the dispersion function:

ηx (s̄) =

√
βx (s̄)

2 sinπνx

∫ s̄+C

s̄

dsKx (s)
√

βx (s) cosΨx (s, s̄) .

(6)
Thus we find that the first order variation of the path length
due to the betatron motion comes from the the shift of the
barycenter of the nonlinear oscillation. On the other hand,
the quadratic terms of the path lengthening represent the
extension of the trajectory by the excursion from the central
orbit, whose lowest order contribution is given by
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(7)
Combining the above results, we obtain the path lengthen-
ing due to the finite amplitude betatron motion:

ΔC = −2π (ξxJx + ξyJy) , (8)

where ξx,y’s are the linear chromaticity [7, 8].
Through the synchrotron oscillation the path lengthening

is converted into the momentum deviation δ = Δp/p: i.e.
in the first order

δ = α−1
1

ΔC

C
, (9)

where α1 is the linear momentum compaction factor. Now
we estimate the momentum deviation in the Touschek scat-
tered particle at the SPring-8 storage ring. The momentum
acceptance of the SPring-8 storage ring is about 3 %. If
the intra-beam collision with energy change 3 % occurs at
the maximum dispersion 0.3 m, where the horizontal be-
tatron function takes 25 m, the invariant amplitude Jx is
1.6×10−6 m. Then the path lengthening results in the mo-
mentum deviation 4.2× 10−5ξx with the momentum com-
paction 1.67×10−4 and the circumference 1436 m. Even in
the case of ξx � 10, the consequent momentum deviation
caused by the Touschek scattering amounts to 4.2× 10−4,
which is negligible small compared to the momentum ac-
ceptance 3 %. But, for a particle with momentum deviation
3 %, we cannot ignore the non-linearity of the chromatic-
ity. Then the effective chromaticity ξx[≡ (∂νx)/(∂δ)] in
Eq. (8) should be replaced with

ξz ≈ ξ(1)
z + 2δξ(2)

z , (10)

where ξ
(1)
z and ξ

(2)
z are the linear and the second order

chromaticities, respectively. Since the second order chro-
maticity ξ

(2)
x is about 300 at the present case of ξ

(1)
x � 10,

the effective chromaticity changes to 30, and hence the mo-
mentum deviation by the finite amplitude betatron motion
is 1×10−3, which brings perceptible influence in the beam
dynamics compared to the momentum acceptance 3 %. On
the other hand, the impact of the vertical chromaticity is
less influential than the horizontal, since the oscillation of
a Touschek scattered particle or an injecting beam is in the
horizontal plane.

MOMENTUM ACCEPTANCE AT THE
SPRING-8 STORAGE RING

Momentum aperture is most directly measured through
the Touschek lifetime, which is originally defined by the
effect that the particle with energy exchange through the
intra-beam collision spills out the rf bucket. In the SPring-8
storage ring, the Touschek lifetime can be measured under
the high bunch current condition of 1 mA/bunch. To mea-
sure the momentum aperture, we measure the Touschek
lifetime with changing rf voltage as shown in Fig. 1. In
Fig. 1, the dotted line denotes the expected Touschek life-
time if it was limited only by the longitudinal acceptance.
In practice the momentum aperture is also restricted by the
transverse dynamics, since the Touschek scattered particle
at a dispersive section starts to oscillate in a horizontal di-
rection. Then the Touschek lifetime reaches the ceiling by
the transverse aperture limit as the solid line in Fig. 1.

Figure 1: Touschek lifetime vs rf voltage.

To understand the particle dynamics that restricts the
momentum acceptance, we investigate the dependence of
the Touschek lifetime on the in-vacuum undulator gap,
which is used as a vertical beam scraper. We investigate
the Touschek beam lifetime for three in-vacuum undula-
tors, i.e. long one of 25 m, and two standard of 4.5 m,
shown in Fig. 2. The beam lifetime of the long undulator is

Figure 2: Touschek lifetime vs undulator gap.

different from the others. But we found that, after normal-
izing the gaps by the square root of the betatron function
at the ends of the undulators, the beam lifetimes coincide
each other. In addition, the normalized gap where the beam
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lifetime starts to be reduced is equal to the minimum nor-
malized height of vacuum chamber. These facts imply that
the momentum acceptance is determined by the transverse
dynamics, i.e. the resonance coupling. The operation point
( 40.15, 18.35 ) of the SPring-8 storage ring is sufficiently
far from the linear resonance, so that it is expected that the
non-linear resonance brings the coupling.

By the way, the optics of the SPring-8 storage ring is
changed from the achromat one to the distributed disper-
sion to reduce the emittance. Although the optics change
brings the bunch volume reduction by half, the Touschek
beam lifetime does not become so short as shown in Fig.
3. This is because the momentum acceptance of the dis-

Figure 3: Touschek lifetime on ring optics.

tributed dispersion optics is larger than that of the achro-
mat. Due to the small peak of the dispersion function of the
former optics the amplitude of the Touschek scattered elec-
tron becomes small compared to that of the latter. Hence
the vertical excursion of the scattered particle by the non-
linear resonance coupling is suppressed, or the momentum
acceptance conversely becomes large. This fact again im-
plies that the momentum acceptance of the Spring-8 stor-
age ring is restricted by the transverse dynamics of the off-
momentum particle.

Since the chromaticity is one of the important param-
eter in dynamics of a circular accelerator, we investigate
its influence on the momentum acceptance. Figure 4 shows

Figure 4: Normalized Touschek lifetime on chromaticity.

the results of the momentum acceptance measurement with
changing the horizontal and the vertical chromaticities in-
dependently. The larger the chromaticities in both the di-

rections become, the shorter the Touschek lifetime does.
This is because the chromaticity excites the non-linear res-
onance coupling, or correctly the sidebands, so that the ver-
tical beam spread grows larger as the chromaticity does.
The growth of the vertical beam spread results in the short-
age of the Touschek lifetime, i.e. the reduction of the mo-
mentum acceptance. See Fig. 5. From these results we find
that the vertical chromaticity has the less impact on the mo-
mentum acceptance than the horizontal.

The cause that the impacts of the chromaticities on the
Touschek lifetime are different is attributed to the path
lengthening by the finite amplitude of the betatron oscil-
lation. Since the scattered particle by the Touschek effect
begins to oscillation in the horizontal plane, the average
path lengthening of the scattered particle in the larger hor-
izontal chromaticity optics may become large, and then it
can enhance the momentum deviation of the scattered par-
ticle, or reduce the momentum acceptance. On the other
hand, the vertical chromaticity give less impact on the mo-
mentum acceptance due to the small vertical amplitude of
the scattered particle.

Figure 5: Touschek lifetime on chromaticity.
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