FFAGs for ERIT and ADS Projects at KURRI

T. Uesugi, Y. Mori, H. Horii, Y. Kuriyama, K. Mishima, A. Osanai, T. Planche, S. Shiroya, M. Tanigaki, *Kyoto University Research Reactor Institute (KURRI), Osaka, Japan*,

Y. Ishi, Mitsubishi Electric Corporation, Japan,

M. Inoue, SLLS, Shiga, Japan,

K. Okabe, I. Sakai, Fukui University, Fukui, Japan,

M. Muto, FFAG-DDS Research Organization, Tokyo, Japan

FFAG complex for ADS study

FFAG-ADS Project

To study

Accelerator Driven Sub-critical Reactor (ADS)

Accelerators for ADS

	Injector	Booster	Main Ring
Focusing	Spiral,	Radial,	Radial,
	8 cells	8 cells	12 cells
Acceleration	Induction	RF	RF
Field index, <i>k</i>	2.5*	4.5	7.5
Energy (max)	0.1-2.5 MeV*	2.5-20 MeV	20-150 MeV
P _{ext} /P _{inj}	5.00(Max)	2.84	2.83
Average orbit radii	0.60 - 0.99 m	1.42 - 1.71 m	4.54 - 5.12 m

* Output energy of the injector is variable

FFAG-ADS-INJC

Injector

	Design	Achieved
E _{ini}	0.1MeV	0.12MeV
E _{ext}	2.5MeV	1.5MeV
Curr.	10nA(lim)	10nA
Rep.	120 Hz	118 Hz

Spiral Sector Magnets Feed Lines for Trim Coils Induction Cores Beam Exit Deflector

Spiral sector magnets spiral angle = 42 deg

Induction acceleration 500 V/turn

Variable field-index k, by means of trim-coils

Booster Injection

* Monitor delay of ES =40us

RF cavity

Magnetic alloy Max : 1kV

Longitudinal Matching

Fast longitudinal matching by bunch rotation (proposed by M. Aiba), H. Horii et al.

- 1. Injection of coasting beam
- 2. Bunch rotation in a waiting bucket
- 3. Matching with acceleration bucket within $\sim(T_{svn}/4)$
- 4. Acceleration

Dependence on capture voltage

Full-span 10ms

Tune measurement

Coherent oscillations were excited by ..

Horizontal; RF knockout Vertical ; Vertical exciter

Measured tunes agreed with the designed values

Extraction

By Kicker and Magnetic septum

Typical efficiency;

circulating ... 1.0nA extracted ... 0.7nA

MS

Main Ring

COD correction

Main source of Closed Orbit Distortion is RF cavity.

Injection

Measured revolution frequency : $f_0 = 1591.84 \text{ kHz}$

Resonant beam loss at ~25MeV

File	e Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Math	Utilities	Help
Tek	Stopper	1		2142 Act	‡s		20	Jun 08 1:	2:25:22	Buttons
	- ' ' ' - ·				```		· · · · ·	· · · ·		
										Math1 Position
										0.0div
					Ŧ					Math1 Scale
	· · · · · _ · ·				· · · + · ·					200.0µV
										Source
	و الله الله ال	a ta Calinda in ta		الم الم الم الم	la sul tata da		 		 . ¹	T Ch Math Ref
			e nation faith		an an faile	p de la septembre			a de la la de l	Reference
M1→									++++++	° ₁ ° ₂
							<mark>l dhe</mark> hjulwyd		r <mark>Marul II</mark> M	°3 °4
					HU					
		a in a fit ainid		an ai shik	<mark>,∥,,,,,,,,,,,</mark> ,,,,,,,,,,,,,,,,,,,,,,,,					- Display
				ין איזי	+ + 					Off
	Pk-Rk(M2)	<u>148,3m</u>	<u> </u>		<u>Ŧ.</u>					
	Math1 20	0.00	100.08			М 100µs 5 ААих ∖∖	0.0MS/s 2 -260mV	20.0ns/pt		Close

Detecting accelerated beams

Radial probe with fluorescent screen can detects a beam at an arbitrary position.

Scaling rule

 $(B/B_0)=(R/R_0)^k$ k=7.5

Reference values;

 R_0 = 4430 mm f_0 = 1591.84 kHz E_0 = 11.6 MeV

100 MeV beam

To increase beam-intensity

We have two plans;

(1) Additional iron-plate at D-pole to push locally the betatron tune away from a resonance

(2) **Replace electrostatic-septum by another kicker**, to improve the injection efficiency.

SUMMARY

Booster

is very stable under operation with 1.5 MeV => 11.6 MeV, 59 Hz Extracted beam intensity is ~1.0 nA

 Main ring successfully accelerated proton beams up to 100 MeV, with repetition rate of 29.5 Hz.

100 MeV is a present energy limit restricted by the radiation safety regulations.

 Next task to increase beam intensity, and extract 100 MeV beams.

FFAG-ERIT

Purpose of Project (NEDO 3-year project: 2005-2007)

- Development of a prototype of compact accelerator-based thermal/epithermal neutron source for Boron Neutron Capture Therapy(BNCT)
- Performance
 - Neutron flux enough for 1 hour treatment
 - Thermal/epithermal neutron flux: $\phi \sim 1 \times 10^9$ n/cm²/s
- FFAG-ERIT(Energy-emittance Recovery Internal Target) method

ERIT <u>Emittance Recovery Internal Target</u> for neutron production with FFAG accelerator

ICOOL simulation for ERIT scheme

Schematic layout of FFAG-ERIT

lon source

- particle: negative hydrogen
- extraction energy : 30 keV
- rep. rate : 200Hz (goal : 500Hz)
- beam duration : 2%, maximum
- beam current :
 - 100µA (ave.)
 - 1-5mA (peak)
- nor. emittance : <1πmm-mrad

LINAC (RFQ/DTL)

- Ion speces	H—
- Injection energy	30keV
- Extruction energy	11MeV
-beam current	>100µA
-rf duty(tube)	~ 2%
-Rep. rate	20-200Hz

FFAG-ERIT RING

-beam energy -circ. beam current -beam life(# of turns)

11MeV 70mA 500-1000turns

-acceptance Av>3000mm.mrad, dp/p>+-5%(full) -v_x, v_y 1.77, 2.27

rf cavity

frequency 18.1MHz

rf voltage >200kV

Beam storage

Bunch signal

8 Mar 2008 15:22:43

First stored beam!

march 6,2008

Summary

• The accelerator –based neutron source for BNCT using ERIT has been developed and the first beam test was successfully completed.

 The beam accumulation and survival in the FFAG storage ring were increased by ERIT scheme with RF reacceleration as expected.
This is the world-first ionization cooling experiment.

• Yield and spectrum of moderated neutrons are under optimization