A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

microtron

Paper Title Other Keywords Page
MOZCM01 Commissioning and Operation of the 1.5 GeV Harmonic Double Sided Microtron at Mainz University linac, dipole, injection, recirculation 51
 
  • A. Jankowiak, K. Aulenbacher, D. Bender, O. Chubarov, M. Dehn, H. Euteneuer, F. Fichtner, B. Gutheil, F. Hagenbuck, R. H. Herr, P. Jennewein, K.-H. Kaiser, W. Klag, H. J. Kreidel, U. Ludwig-Mertin, A. Nuck, J. R. Röthgen, B. Seckler, G. S. Stephan, V. Tioukine, G. Woell, Th. Zschocke
    IKP, Mainz
  In December 2006 the 4th stage of the Mainz Microtron MAMI has been succesfully set into operation expanding the 855MeV output energy of the existing three racetrack microtron cascade (MAMI B) to 1508MeV. This new recirculating cw electron accelerator is realised as a worldwide unique Harmonic Double Sided Microtron (HDSM, [*]). Since February 2006, after only 14 day of commissioning, the HDSM serves as part of the MAMI C accelerator cascade in routine 24h a day operation for nuclear physics experiments. We will give a brief overview of the design and construction of the HDSM and describe in detail the experiences gained during commissioning and the first year of operation.

[*] A. Jankowiak et al., "Status Report on the Harmonic Double Sided Microtron of MAMI C", Proceedings EPAC2006, Edinburgh, p. 834

 
slides icon Slides  
 
WEPC055 General Status of SESAME controls, storage-ring, booster, power-supply 2115
 
  • H. Tarawneh, T. H. Abu-Hanieh, A. Al-Adwan, M. A. Al-najdawi, A. Amro, M. Attal, D. S. Foudeh, A. Kaftoosian, T. A. Khan, F. Makahleh, S. A. Matalgah, A. M. Mosa Hamad, M. M. Shehab, S. Varnasseri
    SESAME, Amman
  • A. Nadji
    SOLEIL, Gif-sur-Yvette
  An update of the status of SESAME is presented. SESAME is a third generation light source facility under construction in Allan, Jordan. The storage ring electron beam energy is 2.5 GeV, the beam emittance is 26 nm.rad and 12 straight sections are available for Insertion Devices. The injector consists of a 22.5 MeV microtron and 800 MeV booster synchrotron, with a repetition rate of 1 Hz. The SESAME building has been handed over on Dec. 2007 and this note focuses on the upgrade and installation plans for the SESAME injector system during the 2008. In the meantime, preparations of technical specifications for most of the storage ring subsystems are in progress. In this note the conceptual design of the storage ring’s bending magnet, pulsed magnets and their power supplies, RF system, shielding wall and the cooling system are presented. The tendering of these components is expected by mid 2008.  
 
WEPC159 Compact Design of Race-track Microtron Magnets focusing, linac, induction, electron 2380
 
  • J. P. Rigla, Yu. A. Kubyshin
    UPC, Barcelona
  • S. Ferrer
    ALBA, Bellaterra
  • A. V. Poseryaev, V. I. Shvedunov
    MSU, Moscow
  A novel design of the end magnets for race-track microtrons (RTMs) is proposed. It consists of four-poles with the REPM material being used as a source of the magnetic field. For a proper choice of parameters of such magnetic system it can provide both the closure of the first orbit after beam reflection and required focusing properties. It is shown that such end magnet can be made quite compact thus allowing to build miniature RTMs. The procedure of design of the four-pole magnetic system and its optimization using the ANSYS code is described in detail.