The FAIR Accelerator Facility

The FAIR 13 Tm Storage Rings

Antiproton Target and Separator

The Collector Ring CR

circumference 216 m magnetic bending power 13 Tm large acceptance $\varepsilon_{x,y} = 240$ (200) mm mrad $\Delta p/p = \pm 3.0$ (1.5) %

fast stochastic cooling (1-2 GHz) of antiprotons (10 s) and rare isotope beams (1.5 s)

fast bunch rotation at h=1 with rf voltage 200 kV adiabatic debunching

optimized ring lattice (slip factor) for proper mixing large acceptance magnet system

additional feature: isochronous mass measurements of rare isotope beams

Ion Optical Modes of the CR

 $\frac{\text{antiprotons}}{Q_x = 4.26, Q_y = 4.84}$ $\gamma_t = 3.7$ $\eta = -0.016$

<u>RIBs</u> $Q_x = 3.21, Q_y = 3.71$ $\gamma_t = 2.8$ $\eta = + 0.185$

 $\frac{\text{isochronous}}{Q_x = 2.33, Q_y = 4.64}$ $\gamma_t = 1.67-1.84$ $\eta = 0$

Fast Bunch Rotation in CR

Fast bunch rotation of SIS100 bunch to provide optimum initial parameters for stochastic cooling total rf voltage 200 kV at h=1 reduces the momentum spread ($2.5 \rightarrow 0.5$ %) after passage of production target

SIS100 bunch after target

bunch rotation cavity (SIS18 bunch compressor)

voltage 40 kV length 1 m frequency range 1.18 – 1.38 MHz rotation time \sim 100 μs

Stochastic Cooling Developments

vacuum tank with actuators for electrode movement including cold heads (20 K) and cooled pre-amplifiers

Beam

nonled side wall (five

prototype electrode (ß = 0.83-0.97)

CR Closed orbit correction

CR Closed orbit correction

MAD and WINAGILE simulations

Alignment rms errors used in tracking studies

Element	$\Delta x [mm]$	Δy [mm]	$\Delta z [mm]$	Roll [mrad]
Dipole	0.2	0.2	0.5	0.5
Quadrupole	0.2	0.2	0.3	0.5
Sextupole	0.2	0.2	0.3	0.5

0.002722 0.001632 0.000432

Closed orbit excursions before correction

	PBAR		RIB		ISO	
	hor	ver	Hor	ver	hor	ver
$\Delta X_{max} [mm]$	17.22	20.93	42.17	51.06	17.07	15.19
$\Delta X_{average} [mm]$	9.76	11.57	14.71	23.75	10.71	8.64

Before correction The most probable COD \approx 20 mm

After correction The most probable COD \approx 1 mm

Closed orbit excursions after correction							
	PBAR		RIB		ISO		
	hor	ver	hor	ver	hor	ver	
$\Delta X_{max}[mm]$	3.07	2.52	1.40	2.64	0.45	0.92	
$\Delta X_{average} [mm]$	1.10	1.20	0.81	1.34	0.25	0.46	

Orbit corrections are important for optimum stochastic cooling

RESR

The Antiproton Accumulator Ring

circumference	240 m
magnetic bending powe	r 13 Tm
tunes Q _x /Q _v	3.12/4.11
momentum acceptance	±1.0 %
transverse accept. h/v	25×10 ⁻⁶ m
transition energy	3.3-6.4

accumulation of antiprotons by a combination of rf stochastic cooling max. accumulation rate 3.5 (7)×10¹⁰/h

max. stack intensity $\sim 1 \times 10^{11}$

additional mode: fast deceleration of RIBs to a minimum energy of 100 MeV/u for injection into NESR (collider mode)

Dynamic Aperture Calculations

Antiproton Accumulation in RESR

The New Experimental Storage Ring

Circumference [m]	222.8
Straight section length [m] Horizontal acceptance [mm mrad] Vertical acceptance [mm mrad]	18 150 40
Momentum acceptance [%] Max. momentum deviation [%]	±1.5 ±2.5
Horizontal tune	4.2
Vertical tune	1.87
Transition energy	4.59
Maximum dispersion [m]	6.8
Horizontal chromaticity	5.9

Accelerator Issues at NESR

- Electron cooling of ions and antiprotons
- Deceleration of ions to 4 MeV/u (in 1.6 s)

and antiprotons to 30 MeV

- Fast extraction (1 turn)
- Slow (resonance) extraction
- Ultraslow (charge changing) extraction
- Longitudinal accumulation of RIBs
- Electron-Ion collisions (bypass mode)
- Antiproton-ion collisions
- Internal target
- Electron target
- High precision mass measurements

NESR Electron Cooler

design by BINP, Novosibirsk

Cool	ler	Pa	ram	nete	ers
		i a	an	ICIC	513

energy	2 - 450 keV
max. current	2 A
beam radius	2.5-14 mm
magnetic field	
gun	up to 0.4 T
cool. sect.	up to 0.2 T
straightness	2×10 -5
vacuum	≤ 10 ⁻¹¹ mbar

- **Issues:** high voltage up to 500 kV
 - fast ramping, up to 250 kV/smagnetic field quality
 - M. Steck, EPAC08, Genua, 23 27 June 2008.

Electron Cooling in the NESR

M. Steck, EPAC08, Genua, 23 – 27 June 2008.

Accumulation of RIBs in NESR

basic idea: confine stored beam to a fraction of the circumference, inject into gap apply strong electron cooling to merge the two beam components ⇒ fast increase of intensity (for low intensity RIBs)

Proof of Principle in the ESR

200 turns

moving barrier

1000 ns

all three schemes worked well: cooling times close to expectations eficient accumulation high quality timing and kicker pulses required Intensity limits: rf voltage and instabilities

Civil Construction of CR/RESR

Building

Ring Tunnel

NESR Civil Construction Planning

Lower (ring) level

rf, diagnostics, vacuum, controls

Upper level

power converters, common systems

FAIR Storage Ring Concept

FAIR Technical Division - Storage Ring:

C. Dimopoulou, A. Dolinskii, O. Gorda, V. Gostishchev,

K. Knie, I. Nesmiyan, F. Nolden, D. Obradors-Campos, C. Peschke

many contributions from technical experts of GSI Accelerator and FAIR Division

advice by B. Franzke, T. Katayama,

D. Möhl, L.Thorndahl (CERN)

contributions by P. Shatunov, D. Shvartz and others from BINP

