A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

pulsed-power

Paper Title Other Keywords Page
MOPP157 Critical Magnetic Field Determination of Superconducting Materials coupling, pick-up, klystron, electromagnetic-fields 919
 
  • A. Canabal, T. Tajima
    LANL, Los Alamos, New Mexico
  • V. A. Dolgashev, S. G. Tantawi
    SLAC, Menlo Park, California
  • T. Yamamoto
    UTNL, Ibaraki
  Using a 11.4 GHz, 50-MW, <1 μs, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.  
 
TUPD004 10Hz Pulsed Power Converters for the ISIS Second Target Station(TS-2) kicker, controls, proton, power-supply 1440
 
  • S. L. Birch, S. P. Stoneham
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  The Extracted Proton Beamline to the ISIS second target station has two 10Hz pulsed magnet systems which extract the proton beam from the existing 50Hz beamline. Kicker 1 magnet system deflects the beam 12.1mrad and kicker 2 magnet system deflects the beam 95mrad. Both magnets are identical, however each pulsed power converter is considerably different. This paper describes the design requirements, topology, installation, testing and successful operation of both pulsed power converters.  
 
WEPC081 Improvement on Pulsed Magnetic Systems at SOLEIL kicker, injection, vacuum, storage-ring 2183
 
  • P. Lebasque, R. Ben El Fekih, M. Bol, J.-P. Lavieville, A. Loulergue, D. Muller
    SOLEIL, Gif-sur-Yvette
  Two "machine study" kicker systems have been designed, built and installed on the storage ring of SOLEIL to kick the stored beam in the horizontal and the vertical planes, in order to investigate the non-linear dynamic of the ring with different insertion devices configurations. This article will describe the different aspects of the design of the two magnets and vacuum chambers, and of their fast high current pulsed power supplies, working with high voltage switches based on MOS transistors. The electrical and magnetic measurements will be presented. The second part of the paper will describe the modifications brought to the thick septum magnet system of the ring injection, in view to reduce the stray field seen by the stored beam. It also presents the different tunings performed on the four injection kickers, in order to reduce the amplitude of the residual bump along the ring down to a very low level. Theses adjustements are aimed to minimize the disturbances on the stored beam when operating the Synchrotron in "Top Up" injection mode.  
 
WEPC091 Beam Injection by Use of a Pulsed Sextupole Magnet at the Photon Factory Storage Ring injection, sextupole, storage-ring, power-supply 2204
 
  • H. Takaki, N. Nakamura
    ISSP/SRL, Chiba
  • K. Harada, T. Honda, Y. Kobayashi, T. Miyajima, S. Nagahashi, T. Obina, A. Ueda
    KEK, Ibaraki
  We will install a pulsed sextupole magnet (PSM) in order to test a new injection system for the top-up injection at the Photon Factory storage ring (PF ring) in the spring of 2008. A parabolic magnetic field of the PSM can give an effective kick to the injected beam that passes a distant region from the field center. And there is little modulation of the orbit of the stored beam because it passes around the center of the PSM. To achieve the beam injection at the PF ring, the PSM has a length of 0.3m, a magnetic field of 400 Gauss at a peak current of 3000A and a pulse width of 2.4μsec in a half-sine form. We already made the PSM and measured the magnetic field. We will report the result of the PSM beam injection at the PF ring.