

Beam Loss Position Monitoring with Optical Fibres at DELTA

Frank Rüdiger

M. Körfer (DESY) W. Göttmann (HMI Berlin) G. Schmidt (DELTA) K. Wille (DELTA)

24. June 2008

Table of Content

- 1. Introduction and Motivation
- 2. Optical Time Domain Reflectometry
- 3. Transmission Measurement with Optical Fibres
- 4. Detection of Cerenkov-Radiation
- 5. Summary

1. Overview of DELTA

3

- 1. Radiation Sources at DELTA
 - The DELTA vacuum chamber is made up of 3 mm V4A steel
 - The synchrotron radiation is almost completely absorbed inside the chamber wall
 - Beam loss electrons colliding with the chamber generate electro-magnetic cascades. Even at small incident angles a significant amount of the shower particles can leave the vacuum chamber

• 1.5 GeV beam loss electrons are the main source of ionising radiation at DELTA

- 1. Challenges for Dosimetry Systems / Advantages of Fibre Optical Systems
- Measurements in narrow spaces
 → small fibre diameter
- Surveillance of large distances

 → complete surveillance of
 several kilometres
- High-dose measurements

 → up to 1000 Gray
- Evaluation during beam operation
 → possible within a few minutes
- → System with two nanoseconds time resolution is available

1. Radiation Induced Attenuation of Optical Fibres

- Chemical bonds are split up in the fibre by exposure to radiation (radiolysis)
 Example: ≡Si-OH → ≡Si-O⁻ + H⁰
- The generated defects are called "colour-centres"
- Transitions between the generated states
 → attenuation of injected light intensity

1. Radiation Induced Attenuation of Optical Fibres

The sensitivity of a fibre optic radiation sensor system can • be chosen by wavelength selection

- 1. Characteristics of a Fibre Optic Radiation Sensor System
 - Linearity between dose α_D and attenuation D

 $\alpha_{\scriptscriptstyle D} = c(\lambda) \cdot D^{f} \quad \left[\mathrm{d} \mathrm{B} / \mathrm{m} \right] \quad \mathrm{f} \cong 1$

valid for a dose range of 10^{-3} to 10^{3} Gy

- Annealing: loss of accumulated dose information due to regeneration processes of the colour centres. Enhancement of dose information lifetime by suitable fibre doping
- The attenuation is independent of dose-rate, temperature and light intensity

2. Optical Time Domain Reflectometry (OTDR)

- Used for radiation dose measurement around the complete length of the storage ring. Resolution about 3 Gray
- Measurement of the Rayleigh backscattered part of the injected light intensity
- The time dependent signal is converted to the position of beam loss; spatial resolution ca. 60 cm

2. OTDR: Hardware

- Tektronix TFP2A
- Selectable wavelength (850 & 1300nm)
- Pulse lengths 1ns, 3 ns, 8 ns, ...

Used Fibres:

- \bullet Multi-mode fibres with core diameter of 50 μm
- Germanium doped and co-doped with Phosphorus

Frank Rüdiger

2. OTDR: Dose Distribution at DELTA (period: 15 weeks)

3. Transmission Measurement: Motivation

Radiation effects of the permanent magnet undulator U55

- Magnets are composed of Neodymium-Iron-Boron alloy
- High radiation doses result in an irreversible demagnetization (based on investigations at the ESRF)
- Limiting dose value: 60 kGy
 - \rightarrow limiting dose rate value for the U55:

0.8 Gy/h

- \rightarrow planned frequent injection mode will increase the radiation dose
- \rightarrow permanent dose surveillance of the U55 needed

3. Transmission Measurement: Principle and Setup

3. Transmission Measurement: Hardware

- Powermeter: Newport Type: PTS-FOPM
- Detectable intensity range: 1pW 2W
- Used wavelength: 660 nm
- The system has been calibrated using thermoluminescence dosimeter-rods
- accuracy is about 30 %, similar to the TTF-system at DESY

3. Results: Measured Fibre Intensity and Beam Current

Power Loop 1 [nW] Delta Current [mA] Current[mA] Power[nW] Time [h]

Power Loop 1 @ 1.5 GeV Multibunch

Frank Rüdiger

- 3. Results: Dose Rates During Standard User Operation
 - Measurement during 60 hours at 1.5 GeV during standard user operation; beam lifetime: 4h @ 100 mA
 - Gap is opened to maximum during beam injection mode

	U55 entrance (upper side)	U55 entrance (lower side)
Dose rate [Gy/h]	0.81 ± 0.23	0.16 ± 0.05

- Limiting value already reached at the upper side
- The dose at the lower side is by a factor 5 smaller

- 3. Results: Dose Rates during Frequent Injection Mode
 - Measurement during 2 hours at 1.5 GeV, <u>frequent injection</u>

600

0

2

4

Time [h]

- First measure: Optimisation of the lead shielding in front of the U55 \rightarrow dose rate lowered by factor 2 \rightarrow sufficient for standard beam operation
 - \rightarrow redesign of the lead shielding until start of frequent injection mode

0

12

10

4. Cerenkov-Light Detector: runtime measurement to localise beam losses

- 4. Cerenkov-Light Detector: Principle of Measurement
 - Runtime-measurement to localise beam losses
 → detector is connected to the upstream-side
 - Time resolution: 2 ns given by sampling rate of the ADC (1 GS/s)
 - Spatial resolution: 0.24 m in longitudinal direction
 - Used wavelength range: 500 nm 650 nm (maximum at 550 nm)
 - Multi-mode-step-index fibres (core diameter: 300 µm) consisting of undoped silicon dioxide with high content of OH⁻ ions

5. Summary:

- Fibre optic radiation sensor systems are well suited for accelerators:
 - usable in narrow spaces
 - dose range is up to 1000 Gy
 - evaluation during beam operation
- OTDR:
 - used for dose surveillance of the complete Delta vacuum chamber
 - dose resolution: 3 Gy
- Transmission measurement:
 - used for dose surveillance of the U55 permanent magnet undulator
 - dose resolution: 60 mGy
- Cerenkov-light detector:
 - system has been installed and functionality has been proven
 - will be used for increase of injection efficiency
 - real-time beam loss position monitoring with single bunch resolution of 2 ns

Frank Rüdiger -

Acknowledgement

- Dr. Markus Körfer (DESY)
- Walter Göttmann (HMI Berlin)
- Prof. Dr. Wille (DELTA)
- Prof. Dr. Weis (DELTA)
- Dr. Gerald Schmidt (DELTA)
- Holger Huck (DELTA)

technische universität dortmund

References:

- Frank Rüdiger, diploma thesis, Aufbau und Einsatz von Glasfaser-Dosimetriesystemen an der Speicherringanlage DELTA, 2008
- Manuel Benna, diploma thesis, Strahlverlustmessung und Dosimetrie am DELTA, 2006
- S. Girard, A. Boukenter, et al., Properties of phosphourus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibres, 2003
- D. Griscom, E. Friebele, Fundamental radiation-induced defect centers in synthetic fused silicas: Atomic chlorine, delocalized E' centers and a triplet state, 1986
- H. Henschel, M. Körfer, J. Kuhnhenn, U. Weiland, F.Wulf, Fibre optic radiation sensor systems for particle accelerator, Nuclear Instruments and Methods in Physics Research A 526, 2004
- H. Henschel, O. Köhn, H.U. Schmidt, Optical Fibres as radiation dosimeters, Nuclear Instruments and Methods in Physics Research B 69, 1992
- G. Schmidt et al., Optical Fibre Beam Loss Monitors for Storage Rings at DELTA, Proceedings of EPAC, 2002
- W.V.Hassenzahl, T.M. Jenkins et al., An Assessment of the Radiation on Permanent-Magnet Material in the ALS Insertion Devices, Nuclear Instruments and Methods in Physics Research A291, 1990
- G. Schmidt et al., Proposal for a Frequent Injection Mode at DELTA, Proceedings of EPAC, 2004
- H. Henschel et al, Optical Fibre Dosimeter For SASE FEL Undulators, DIPAC, 2003
- W. Göttmann, M. Körfer, J. Kuhnhenn, Beam Loss Position Monitoring using Cerenkov Radiation on Optical Fibers, Proceedings of DIPAC, 2005 Frank Rüdiger