Keyword: vacuum
Paper Title Other Keywords Page
MOB3IO01 Commissioning of the Phase-I SuperKEKB B-Factory and Update on the Overall Status ion, electron, emittance, coupling 32
 
  • Y. Ohnishi, T. Abe, T. Adachi, K. Akai, Y. Arimoto, K. Egawa, Y. Enomoto, J.W. Flanagan, H. Fukuma, Y. Funakoshi, K. Furukawa, N. Iida, H. Iinuma, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, H. Kaji, T. Kamitani, T. Kawamoto, S. Kazama, M. Kikuchi, T. Kobayashi, K. Kodama, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, S. Nakamura, T.T. Nakamura, H. Nakayama, T. Natsui, M. Nishiwaki, K. Ohmi, T. Oki, S. Sasaki, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, H. Sugimoto, M. Tanaka, M. Tawada, S. Terui, M. Tobiyama, S. Uehara, S. Uno, X. Wang, K. Watanabe, Y. Yano, S.I. Yoshimoto, R. Zhang, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • M.E. Biagini, M. Boscolo, S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • D. El Khechen
    LAL, Orsay, France
 
  The SuperKEKB B-Factory at KEK (Japan), after few years of shutdown for the construction and renovation, has finally come to the Phase-1 commissioning of the LER and HER rings, without the final focus system and the Belle II detector. Vacuum scrubbing, optics tuning and beam related background measurements were performed in this phase. Low emittance tuning techniques have also been applied in order to set up the rings for Phase-2 with colliding beams next year. An update of the final focus system construction, as well as the status of the injection system with the new positron damping ring and high current/low emittance electron gun is also presented.  
slides icon Slides MOB3IO01 [10.375 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB05 Tokamak Accelerator ion, plasma, ECR, experiment 76
 
  • G. Li
    ASIPP, Hefei, People's Republic of China
 
  Tokamak accelerator within plasma is analyzed to be implemented in existing machines for speeding the development of fusion energy with seeding fast particles from high current accelerators - the so-called two-component reactor approach [J. M. Dawson, H. P. Furth, and F. H. Tenney, Phys. Rev. Lett. 26, 1156 (1971)]. All plasma particles are heated at the same time by inductively-coupled power transfer (IPT) within an energy confinement time. This could facilitate the attainment of ignition in tokamak by forming high-gain high-field (HGHF) fusion plasma suggested in [Li. G., Sci. Rep.5, 15790 (2015)]. HGHF mechanism is validated by the flux-conserving process existed in discharges of tokamak plasma at normal operation with long pulses or at compression process within an energy confinement time. Differences between HGHF plasma and former unity-beta plasma are discussed. Tokamak as an accelerator could scale down the design capacity of fusion power plant by simply inserting in-vacuum vertical field coils (IVC) within its vacuum vessel, such as China Fusion Engineering Test Reactor (CFETR).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB07 Off-Orbit Ray Tracing Analysis for the APS-Upgrade Storage Ring Vacuum System ion, photon, storage-ring, site 82
 
  • J.A. Carter, K.C. Harkay, B.K. Stillwell
    ANL, Argonne, Illinois, USA
 
  Funding: Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science under contract DE-AC02-06CH11357.
A MatLab program has been created to investigate off-orbit ray tracing possibilities for the APS-Upgrade stor-age ring vacuum system design. The goals for the pro-gram include calculating worst case thermal loading conditions and finding minimum shielding heights for photon absorbers. The program computes the deviation possibilities of synchrotron radiation rays emitted along bending magnet paths using discretized local phase space ellipses. The sizes of the ellipses are computed based on multi-bend achromat (MBA) lattice parameters and the limiting aperture size within the future storage ring vacuum system. For absorber height calculations, rays are projected from each point in the discretized ellipse to the locations of downstream absorbers. The absorber heights are mini-mized while protecting downstream components from all possible rays. For heat loads, rays are projected until they hit a vacuum chamber wall. The area and linear power densities are calculated based on a ray's distance trav-elled and striking incidence angle. A set of worse case local heat loads is collected revealing a maximum condi-tion that each vacuum component must be designed to withstand.
 
poster icon Poster MOPOB07 [12.749 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB10 Design of the HGVPU Undulator Vacuum Chamber for LCLS-II ion, alignment, undulator, operation 89
 
  • J.E. Lerch, J.A. Carter, P.K. Den Hartog, G.E. Wiemerslage
    ANL, Argonne, Illinois, USA
 
  A vacuum chamber has been designed and prototyped for the new Horizontal Gap Vertically Polarization Undulator (HGVPU) as part of the LCLS-II upgrade project. Numerous functional requirements for the HGVPU assembly constrained the vacuum chamber design. These constraints included spatial restrictions to achieve small magnet gaps, narrow temperature and alignment specifications, and minimization of wall erosion and pressure drop within the cooling channels. This led to the design of a 3.5-meter length, thin walled, extruded aluminium chamber with interior water cooling. FEA stress analysis was performed to ensure the chamber will not fail under vacuum and water pressure. A cooling scheme was optimized to ensure water flow is sufficient to maintain temperature without the risk of erosion and to minimize pres-sure drop across the chamber.  
poster icon Poster MOPOB10 [60.628 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB10  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB11 Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project ion, photon, storage-ring, impedance 92
 
  • B.K. Stillwell, B. Brajuskovic, J.A. Carter, H. Cease, R.M. Lill, G. Navrotski, J. R. Noonan, K.J. Suthar, D.R. Walters, G.E. Wiemerslage, J. Zientek
    ANL, Argonne, Illinois, USA
  • M.P. Sangroula
    IIT, Chicago, Illinois, USA
 
  Funding: UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Upgrade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation, insufficient beam position monitor stability, excessive beam impedance, excessive heating by induced electrical surface currents, and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mock-up assemblies, performing mechanical testing of chamber weld joints, developing computational tools, investigating design alternatives, and performing electrical bench measurements. Status of these activities and some of what has been learned to date will be shared.
*B. Stillwell et al., Conceptual Design of a Storage Ring Vacuum System Compatible with Implementation of a Seven Bend Achromat Lattice at the APS, in Proc. IPAC'14, Dresden, Germany, 2409-2411.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB24 Design of Main Coupler for 650 MHz SC Cavities of PIP-II Project ion, cavity, cryomodule, proton 121
 
  • O.V. Pronitchev, S. Kazakov
    Fermilab, Batavia, Illinois, USA
 
  Proton Improvement Plan-II at Fermilab has designed an 800MeV superconducting pulsed linac which is also capable of running in CW mode. The high energy section from 185MeV to 800MeV will be using cryomodules with two types of 650MHz elliptical cavities. Both types of cryomodules will include six 5-cell elliptical cavities. Each cavity will have one coupler. Updated design of the 650 MHz main coupler is reported.  
poster icon Poster MOPOB24 [1.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB25 The Use of KF Style Flanges in Low Particlulate Applications ion, diagnostics, hardware, cavity 124
 
  • K.R. Kendziora, J.J. Angelo, C.M. Baffes, D. Franck, R.J. Kellett
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab, Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
As SCRF particle accelerator technology advances the need for 'low particulate' and 'particle free' vacuum systems becomes greater and greater. In the course of the operation of these systems, there comes a time when vari-ous instruments have to be temporarily attached for diag-nostic purposes: RGAs, leak detectors, and additional pumps. In an effort to make the additions of these instru-ments easier and more time effective, we propose to use KF style flanges for these types of temporary diagnostic connections. This document will describe the tests used to compare the particles generated using the assembly of the, widely accepted for 'particle free' use, conflat flange to the proposed KF style flange, and demonstrate that KF flanges produce less particles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB36 Design of the High Beta 650 MHz Cryomodule - PIP II ion, cavity, cryomodule, cryogenics 149
 
  • V. Roger, T.H. Nicol, Y.O. Orlov
    Fermilab, Batavia, Illinois, USA
 
  Funding: US Department of Energy
In this paper the design of the high beta 650 MHz cryomodule will be presented. This cryomodule is composed of six 5-cell 650 MHz elliptical cavities, designed for β=0.92. These cryomodules are the last elements of the Super Conducting (SC) linac architecture which is the main component of the Proton Improvement Plan-II (PIP-II) at Fermilab. This paper summarizes the design choices which have been done. Mechanical, thermal and cryogenic analyses have been performed to ensure the proper operation. First the concept of having a strong-back at room temperature has been validated. Then the heat loads have been estimated and all the components have been integrated inside the cryomodule by designing the supports, the beam line, the thermal shield and the cryogenic lines. All these elements and the calculations leading to the design of this cryomodule will be described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB36  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB81 Deposition of Non-Evaporative Getters R&D Activity for HEPS-TF ion, cathode, site, distributed 238
 
  • P. He, D.Z. Guo, B. Liu, Y. Ma, Y.C. Yang, L. Zhang
    IHEP, Beijing, People's Republic of China
 
  Non Evaporable Getter(NEG) coating technology was widely used around the world's ultra-low emittance storage rings. It will provide the distributed pumping which is the obvious solution to solve the conductance limitation of narrow vacuum chamber at small magnet aperture. The HEPS-TF is the R&D project of HEPS (High Energy Photon Source), it will cover all of the key technology for HEPS accelerator system and beamlines. In order to meet the small aperture vacuum chamber distributed pumping requirement, the NEG coating R&D for HEPS vacuum chamber is under the way. Getter films deposited on the inner surface of the chamber would transform the vacuum chamber from an outgassing source into a pump. The coating test bench will be shown here and coating procedure will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB81  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2CO04 Vacuum Breakdown at 110 GHz ion, experiment, cavity, GUI 275
 
  • S.C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  A 1.5 MW, 110 GHz gyrotron is used to produce a linearly polarized quasioptical beam in 3 μs pulses. The beam is concentrated in vacuum to produce strong electric fields on the surfaces of dielectric and metallic samples, which are being tested for breakdown threshold at high fields. Dielectrics are tested in the forms of both windows, with electric fields parallel to the surface, and sub-wavelength dielectric rod waveguides, with electric fields perpendicular to the surface. Currently, visible light emission, absorbed/scattered microwave power, and vacuum pressure diagnostics are used to detect discharges on dielectric surfaces. Future experiments will include dark current diagnostics for direct detection of electrons. Dielectrics to be tested include crystal quartz, fused quartz, sapphire, high resistivity float-zone silicon, and alumina. Metallic accelerator structures will also be tested in collaboration with SLAC. These tests will require shortening of the microwave pulse length to the nanosecond scale.  
slides icon Slides TUA2CO04 [1.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA2CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA49 A General Model of Vacuum Arcs in Linacs ion, plasma, experiment, laser 387
 
  • J. Norem
    Nano Synergy, Inc., Downers Grove, Illinois, USA
  • Z. Insepov
    Purdue University, West Lafayette, Indiana, USA
 
  We are developing a general model of breakdown and gradient limits that applies to accelerators, along with other high field applications such as power grids and laser ablation. Our recent efforts have considered failure modes of integrated circuits, sheath properties of dense, non-Debye plasmas and applications of capillary wave theory to rf breakdown in linacs. In contrast to much of the rf breakdown effort that considers one physical mechanism or on e experimental geometry, we are finding that there is an enormous volume of relevant material in the literature that helps to constrain our model and suggest experimental tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA49  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA59 Successful Laboratory-Industrial Partnerships: the Cornell-Friatec Segmented Insulator for High Voltage DC Photocathode Guns ion, gun, electron, high-voltage 405
 
  • K.W. Smolenski, B.M. Dunham
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D.L. Barth, M. Muehlbauer, S. Wacker
    FRIATEC AG, Mannheim, Germany
  • J.M. Maxson
    UCLA, Los Angeles, California, USA
 
  High voltage DC photocathode guns currently offer the most reliable path to electron beams with high current and brightness. The performance of a gun is directly dependent on its vacuum and high voltage capabilities, determined in large part by the ceramic insulators. The insulator must meet XHV standards, bear the load of pressurized SF6 on its exterior, support the massive electrode structures as well as holding off DC voltages up to 750kV. Construction of UHV and high voltage capable insulators require high purity ceramics and metal components proven to minimize thermal stress between the brazed ceramic rings and metal guard rings. The use of replaceable guard rings is a critical way of controlling manufacturing costs while extending the life cycle of the insulator. Successful fabrication requires proven manufacturing methods in flatness, parallelism, and maintaining alignment of many parts during the brazing process. Taking a scalable, modular approach, the insulator design can be applied to a variety of gun voltages and can be used by other projects. The Cornell-Friatec insulator was designed collaboratively and has now been produced in quantity for Cornell and elsewhere.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA59  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUB3IO01 Commissioning of the Max IV Light Source ion, storage-ring, MMI, cavity 439
 
  • P.F. Tavares, E. Al-Dmour, Å. Andersson, M. Eriksson, M.J. Grabski, M.A.G. Johansson, S.C. Leemann, L. Malmgren, M. Sjöström, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility, currently under commissioning in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. In this paper, we briefly review the overall facility layout and design concepts and focus on recent results obtained in commissioning of the accelerators with an emphasis on the ultralow emittance 3 GeV ring, the first light source using a multibend achromat.  
slides icon Slides TUB3IO01 [6.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB39 Mechanical Design and Manufacturing of a Two Meter Precision Non-Linear Magnet System ion, alignment, optics, simulation 578
 
  • J.D. McNevin
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, F.H. O'Shea
    RadiaBeam, Santa Monica, California, USA
 
  Funding: Department of Energy Office of Science DE-SC0009531
RadiaBeam Technologies is currently developing a non-linear magnet insert for Fermilab's Integrable Optics Test Accelerator (IOTA), a 150 MeV circulating electron beam storage ring designed for investigating advanced beam physics concepts. The physics requirements of the insert demand a high level of precision in magnet geometry, magnet axis alignment, and corresponding alignment of the vacuum chamber geometry within the magnet modules to maximize chamber aperture size. Here we report on the design and manufacturing of the vacuum chamber, magnet manufacturing, and kinematic systems.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB39  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB51 A NUMERICAL STUDY OF THE MICROWAVE INSTABILITY AT APS ion, storage-ring, simulation, experiment 602
 
  • A. Blednykh, G. Bassi, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
  • R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.
Two particle tracking codes, ELEGANT and SPACE, have been used to simulate the microwave instability in the APS storage ring. The total longitudinal wakepotential for the APS vacuum components, computed by GdfidL, has been used as the input file for the simulations. The numerical results have been compared with bunch length and the energy spread measurements for different single-bunch intensities.
 
poster icon Poster TUPOB51 [1.032 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1IO02 Computation of Electromagnetic Fields Generated by Relativistic Beams in Complicated Structures ion, simulation, electromagnetic-fields, wakefield 642
 
  • I. Zagorodnov
    DESY, Hamburg, Germany
 
  We discuss recent developments of numerical methods for computation of wakefields excited by short bunches in accelerators. They include a low-dispersive computational algorithm, conformal approximation of the boundaries, surface conductivity, and indirect wake potential integration. The implementation of these methods in the electromagnetic code ECHO for 2D and 3D problems are presented with a special emphasis on a new ECHO2D code for fast calculations of wakefields in rectangular geometries. Several examples of application of the code to calculation of wakefields for the European Free Electron Laser project and in the Linac Coherent Light Source (LCLS) project are considered.  
slides icon Slides WEA1IO02 [4.461 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA1IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA05 EBIS Charge Breeder for RAON Facility ion, electron, gun, ISOL 696
 
  • S.A. Kondrashev, J.-W. Kim, Y.K. Kwon, Y.H. Park, H.J. Son
    IBS, Daejeon, Republic of Korea
 
  New large scale accelerator facility called RAON is under design in Institute for Basic Science (IBS, Daejeon, Korea). Both technics of rare isotope production Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IF) will be combined within one facility for the first time to provide wide variety of rare isotope ion beams for nuclear physics experiments and applied research. Electron Beam Ion Source (EBIS) charge breeder will be used to prepare rare isotope ion beams produced by ISOL method for efficient acceleration. Beams of different rare isotopes will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/4 and accelerated by linac post-accelerator to energies of 18.5 MeV/u. RAON EBIS charge breeder will provide the next step in the development of breeder technology by implementation of electron beam with current up to 3 A and utilization of wide (8') warm bore of 6 T superconducting solenoid. The design of RAON EBIS charge breeder and results of dumping of high power DC and pulsed electron beam into collector will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB4CO04 100 kW Very Compact Pulsed Solid-State RF Amplifier. Development and Tests ion, controls, rf-amplifier, power-supply 873
 
  • G.B. Sharkov, A.A. Krasnov, S.A. Polikhov
    NIITFA, Moscow, Russia
  • R. Cisneros, R.J. Patrick
    TMD Technologies, Middlesex, United Kingdom
 
  A high power solid-state RF amplifier system has been developed and tested. The modular scalable architecture of the system allows to build megawatt-range compact, robust, cost effective RF amplifiers/generators with high plug efficiency. Using a special designed technology of RF power on-board combination for several LDMOS transistors and very compact high power RF combiners, the amplifier with output power of 100 kW and duty cycle of 5% has been fit into a single 19" cabinet. The system has been tested at the output power up to 104 kW with 3.5 ms pulses. The overview of the technologies, the design of the machine, and its main subsystems is given in this talk. The test results and the market perspectives are also presented.  
slides icon Slides WEB4CO04 [19.504 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEB4CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB20 Multiple Scattering Effects on a Short Pulse Electron Beam Travelling Through Thin Beryllium Foils ion, experiment, scattering, simulation 937
 
  • E.E. Wisniewski, S.P. Antipov, M.E. Conde, D.S. Doran, W. Gai, Q. Gao, C.-J. Jing, W. Liu, J.G. Power, C. Whiteford
    ANL, Argonne, Illinois, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • Q. Gao
    TUB, Beijing, People's Republic of China
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Argonne, a U.S.A. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The Argonne Wakefield Accelerator beamlines have stringent vacuum requirements (100 picotorr) necessitated by the Cesium telluride photoinjector. In direct conflict with this, the structures-based wakefield accelerator research program sometimes includes worthy but complex experimental installations with components or structures unable to meet the vacuum standards. A proposed chamber to sequester such experiments safely behind a thin beryllium (Be) window is described and the results of a study of beam-quality issues due to the multiple scattering of the beam through the window are presented and compared to GEANT4 simulations via G4beamline. Three thicknesses of Be foil were used: 30, 75 and 127 micron, probed by electron beams of three different energies: 25, 45, and 65 MeV. Multiple scattering effects were evaluated by comparing the measured transverse rms beam size for the scattered vs. unscattered beam. The experimental results are presented and compared to simulations. Results are discussed along with the implications and suggestions for the future sequestered vacuum chamber design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB20  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB58 Cathode Puck Insertion System Design for the LEReC Photoemission DC Electron Gun ion, cathode, gun, insertion 1021
 
  • C.J. Liaw, V. De Monte, L. DeSanto, K. Hamdi, M. Mapes, T. Rao, A.N. Steszyn, J.E. Tuozzolo, J. Walsh
    BNL, Upton, Long Island, New York, USA
  • K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. DOE.
The operation of LEReC is to provide an electron cooling to improve the luminosity of the RHIC heavy ion beam at lower energies in a range of 2.5-25 GeV/nucleon. The electron beam is generated in a DC Electron Gun (DC gun) designed and built by the Cornell High Energy Synchrotron Source Group. This DC gun will operate around the clock for at least two weeks without maintenance. This paper presents the design of a reliable cathode puck insertion system, which includes a multi-pucks storage device, a transfer mechanism, a puck insertion device, a vacuum/control system, and a transport scheme.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB58  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB67 K2CsSb Photocathode Performance in QWR SRF Gun cathode, ion, gun, multipactoring 1042
 
  • E. Wang, Y. Hao, Y.C. Jing, V. Litvinenko, I. Pinayev, T. Rao, J. Skaritka, G. Wang, T. Xin
    BNL, Upton, Long Island, New York, USA
 
  In 2016 run of Coherent Electron Cooling, we have successfully tested the performance of a number of K2CsSb cathodes. These cathodes with QE of 6%-10% were fabricated in Instrumentation Division, a few miles away, transported to RHIC tunnel under UHV conditions, attached to the CeC gun, kept in storage, and inserted in the gun as needed. A maximum bunch charge of 4.6 nC was generated in the gun when the QE was 1.8 %. With careful conditioning at increasing accelerating fields, it was possible to maintain the QE of several cathodes for more than a week. For the cathodes that experienced degradation, the primary cause was multipacting when the power into the gun was increased. In the initial runs, the entire 20 mm substrate face was coated with the cathode material causing cathode induced multipacting. For subsequent measurements, the substrate was masked to coat only the central 9 mm of the substrate. By optimizing the procedure for boosting the power to the gun and covering all viewports to minimize dark current, we were able to minimize QE degradation. In this paper we discuss the cathode preparation, transfer to the gun and operational experience with the cathodes in 112 MHz gun.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB67  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1IO02 Results of the 2015 Helium Processing of CEBAF Cryomodules ion, cavity, cryomodule, radiation 1054
 
  • M.A. Drury, F. Humphry, L.K. King, M.D. McCaughan, A.D. Solopova
    JLab, Newport News, Virginia, USA
 
  The CEBAF accelerator at Jefferson Lab consists of an injector and two linacs connected by arcs. Each linac contains 25 cryomodules that are designed to deliver an integrated energy of 2.2 GeV per pass to an electron beam in order to meet 12 GeV energy requirements. Helium processing is a processing technique that is used to reduce field emission (FE) in SRF cavities. Helium processing of the 50 installed linac cryomodules was seen as necessary to support 12 GeV energy requirements. This paper will describe the processing procedure and summarize the results of this effort. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.  
slides icon Slides THA1IO02 [3.803 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA1IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1CO06 Status of the Development of Superconducting Undulators for Storage Rings and Free Electron Lasers at the Advanced Photon Source undulator, ion, photon, operation 1068
 
  • Y. Ivanyushenkov, C.L. Doose, J.F. Fuerst, E. Gluskin, K.C. Harkay, Q.B. Hasse, M. Kasa, Y. Shiroyanagi, D. Skiadopoulos, E. Trakhtenberg
    ANL, Argonne, Illinois, USA
  • P. Emma
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Development of superconducting undulator (SCU) technology continues at the Advanced Photon Source (APS). Experience of building and successful operation of the first short-length, 16-mm period length superconducting undulator SCU0 paved a way for the second 1-m long, 18-mm period device, SCU1, which is in operation since May 2015. The APS SCU team has also built and tested a 1.5-m long, 21-mm period undulator as a part of LCLS SCU R&D program aiming at demonstration of SCU technology availability for free electron lasers. This undulator successfully achieved all the requirements including a phase error of 5 degree rms. Our team is currently completing one more 1-m, 18-mm period undulator that will replace the SCU0. We are also working on a helical SCU for the APS. The status of these projects will be presented.
 
slides icon Slides THA1CO06 [3.545 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA1CO06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA14 Ion Effects in the APS Particle Accumulator Ring ion, simulation, emittance, coherent-effects 1123
 
  • J.R. Calvey, K.C. Harkay, C. Yao
    ANL, Argonne, Illinois, USA
 
  Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA33 A Preliminary Beam Impedance Model of the Advanced Light Source Upgrade at LBL ion, impedance, cavity, simulation 1174
 
  • S. Persichelli, J.M. Byrd, S. De Santis, D. Li, T.H. Luo, J.R. Osborn, C.A. Swenson, M. Venturini, Y. Yang
    LBNL, Berkeley, California, USA
 
  The proposed upgrade of the Advanced Light Source (ALS-U) consists of a multi-bend achromat ultralow emittance lattice optimized for the production of diffraction-limited soft x-rays. A narrow-aperture vacuum chamber is a key feature of the new generation of light sources, and can result in a significant increase in the beam impedance, potentially limiting the maximum achievable beam current. While the conceptual design of the vacuum system is still in a very early development stage, this paper presents a preliminary estimate of the beam impedance using a combination of electromagnetic simulations and analytical calculations. We include the impedance of cavities, select vacuum-chamber components and resistive wall in a multi-layered beam chamber with NEG coating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA45 Update of the SEY Measurement at Fermilab Main Injector ion, electron, proton, operation 1190
 
  • Y. Ji
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Studies of in-situ Secondary electron yield (SEY) mea- surements of material samples at the Main Injector (MI) beam pipe wall location started in 2013. [2, 3] These studies aimed at understanding how the beam conditioning of differ- ent materials evolve if they function as MI vacuum chamber walls. The engineering run of the SEY measurement test stand was finished in 2014. From 2014 to 2016 the Fermilab accelerator intensity has increased from 24 × 1012 protons to 42 × 1012 protons. The beam conditioning effect on SS316L and TiN coated SS316L has been observed throughout this period. [1] Improvement of the data acquisition procedure and hardware has been performed. A deconditioning pro- cess was observed during the accelerator annual shut down in 2016.  
poster icon Poster THPOA45 [3.113 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA49 Electron Cloud Trapping in Recycler Combined Function Dipole Magnets ion, electron, dipole, proton 1200
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
 
  Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that combined function magnets trap the electron cloud with their magnetic field, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud in a combined function magnet is located at the beam center and up to 1% of the particles can be trapped by its magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulations allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a single clearing bunch of 1*1010 p at any position in the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA49  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA62 Clearing Magnet Design for APS-U ion, storage-ring, electron, permanent-magnet 1228
 
  • M. Abliz, J.H. Grimmer, Y. Jaski, M. Ramanathan, F. Westferro
    ANL, Argonne, Illinois, USA
 
  Abstract Advanced Photon Source is in the process of developing an upgrade of the storage ring. The Upgrade will be converting the current double bend lattice to a multi-bend lattice (MBA). In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring tunnel is proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the principle, design and mechanical design of the clearing magnet scheme for the APS-Upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA64 MAX IV Storage Ring Magnet Installation Procedure ion, storage-ring, MMI, operation 1234
 
  • K. Åhnberg, M.A.G. Johansson, P.F. Tavares, L. Thånell
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV facility consists of a 3 GeV storage ring, a 1.5 GeV storage ring and a full energy injector linac. The storage ring magnets are based on an integrated "magnet block" concept. Each magnet block holds several consecutive magnet elements. The 3 GeV ring consists of 140 magnet blocks and 1.5 GeV ring has 12 magnet blocks. During the installation, procedures were developed to guarantee block straightness. This article discusses the installation procedure from a mechanical point of view and presents measurement data of block straightness and ring performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA64  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)