Keyword: coupling
Paper Title Other Keywords Page
MOB3IO01 Commissioning of the Phase-I SuperKEKB B-Factory and Update on the Overall Status ion, electron, vacuum, emittance 32
 
  • Y. Ohnishi, T. Abe, T. Adachi, K. Akai, Y. Arimoto, K. Egawa, Y. Enomoto, J.W. Flanagan, H. Fukuma, Y. Funakoshi, K. Furukawa, N. Iida, H. Iinuma, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, H. Kaji, T. Kamitani, T. Kawamoto, S. Kazama, M. Kikuchi, T. Kobayashi, K. Kodama, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, S. Nakamura, T.T. Nakamura, H. Nakayama, T. Natsui, M. Nishiwaki, K. Ohmi, T. Oki, S. Sasaki, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, H. Sugimoto, M. Tanaka, M. Tawada, S. Terui, M. Tobiyama, S. Uehara, S. Uno, X. Wang, K. Watanabe, Y. Yano, S.I. Yoshimoto, R. Zhang, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • M.E. Biagini, M. Boscolo, S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • D. El Khechen
    LAL, Orsay, France
 
  The SuperKEKB B-Factory at KEK (Japan), after few years of shutdown for the construction and renovation, has finally come to the Phase-1 commissioning of the LER and HER rings, without the final focus system and the Belle II detector. Vacuum scrubbing, optics tuning and beam related background measurements were performed in this phase. Low emittance tuning techniques have also been applied in order to set up the rings for Phase-2 with colliding beams next year. An update of the final focus system construction, as well as the status of the injection system with the new positron damping ring and high current/low emittance electron gun is also presented.  
slides icon Slides MOB3IO01 [10.375 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB47 Beam Coupling Impedance Characterization of Third Harmonic Cavity for ALS Upgrade ion, impedance, cavity, HOM 167
 
  • T.H. Luo, K.M. Baptiste, M. Betz, J.M. Byrd, S. De Santis, S. Kwiatkowski, S. Persichelli, Y. Yang
    LBNL, Berkeley, California, USA
 
  The ALS upgrade to a diffraction-limited light source (ALS-U) depends on the ability to lengthen the stored bunches to limit the emittance growth and increase the beam life time. In order to achieve lengthening in excess of fourfold necessary to this end, we are investigating the use of the same passive 1.5 GHz normal-conducting RF cavities currently used on the ALS. While the upgraded ring RF parameters and fill pattern make it easier as long as the beam-induced phase transient is concerned, the large lengthening factor and the strongly non-linear lattice require particular attention to the cavities contribution to the machine overall impedance budget. In this paper we present our estimates of the narrow-band impedance obtained by numerical simulation and bench measurements of the cavities' resonant modes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB47  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB71 Consideration on Determination of Coupling Factors of Waveguide Iris Couplers cavity, ion, DTL, simulation 229
 
  • S.W. Lee, M.S. Champion, Y.W. Kang
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT­Battelle, LLC, under contract DE­AC05­00OR22725 for the U.S.DOE.
Waveguide iris couplers are frequently used to power accelerating cavities in low beta sections of ion accelerators. In ORNL Spallation Neutron Source (SNS), six drift tube linac (DTL) cavity structures have been operating. An iris input coupler with a tapered ridge waveguide and a waveguide ceramic disk window feeds each cavity. The original couplers and cavities have been in service for more than a decade. Since all DTL cavity structures are fully utilized for neutron production, none of the cavity structures is available as a test cavity or a spare. Maintaining spares of the iris couplers for operations and future system upgrade without using the full DTL structure, a test setup for precision tuning is needed. A smaller single-cell cavity may be used for pretuning of the coupling irises as the test cavity and high power RF conditioning of the iris couplers as the bridge waveguide. In this paper, study of using a single-cell cavity for the iris tuning and the conditioning is presented with 3D simulations. A single-cell test cavity has been built and used for low power bench measurement with the iris couplers to demonstrate the approach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB71  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUB3CO04 A New Thermionic RF Electron Gun for Synchrotron Light Sources ion, gun, cathode, electron 453
 
  • S.V. Kutsaev, A.Y. Murokh, E.A. Savin, A.Yu. Smirnov, A.V. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, J.J. Hartzell, A. Verma
    RadiaBeam, Santa Monica, California, USA
  • A. Nassiri, Y. Sun, G.J. Waldschmidt, A. Zholents
    ANL, Argonne, Illinois, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, under contract DE-SC0015191 and contract No. DE-AC02-06CH11357.
A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source of Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity, and report the progress towards high power tests of the cathode assembly of the new gun.
 
slides icon Slides TUB3CO04 [2.661 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB3CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB35 Progress on Skew Parametric Resonance Ionization Cooling Channel Design and Simulation ion, multipole, resonance, optics 565
 
  • A.V. Sy, Y.S. Derbenev, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • A. Afanasev
    GWU, Washington, USA
  • Y. Bao
    UCR, Riverside, California, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
 
  Funding: This work was supported in part by U.S. DOE STTR Grant DE-SC0005589. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Skew Parametric-resonance Ionization Cooling (Skew PIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. Properties of the linear beam dynamics have been previously reported and good agreement exists between theory, analytic solutions, and simulations. Progress on aberration compensation in the coupled correlated optics channel is presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB35  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB40 Fundamental Properties of a Novel, Metal-Dielectric, Tubular Structure with Magnetic RF Compensation ion, linac, impedance, simulation 582
 
  • A.V. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: Supported by DoE Contract # DE-SC0011370
A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev's disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c-0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.
 
poster icon Poster TUPOB40 [1.447 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB40  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB52 Linear Optics Characterization and Correction Method Using Turn-By-Turn BPM Data Based on Resonance Driving Terms with Simultaneous BPM Calibration Capability ion, lattice, experiment, quadrupole 605
 
  • Y. Hidaka, B. Podobedov
    BNL, Upton, Long Island, New York, USA
  • J. Bengtsson
    J B Optima, LLC, Rocky Point, USA
 
  Funding: The study is supported by U.S. DOE under Contract No. DE-AC02-98CH10886.
A fast new linear lattice characterization / correction method based on turn-by-turn (TbT) beam position monitor (BPM) data in storage rings has been recently developed and experimentally demonstrated at NSLS-II. This method performs least-square fitting iteratively on the 4 frequency components extracted from TbT data and dispersion functions. The fitting parameters include the errors for normal/skew quadrupole strength and 4 types of BPM errors (gain, roll, and deformation). The computation of the Jacobian matrix for this system is very fast as it utilizes analytical expressions derived from the resonance driving terms (RDT), from which the method name DTBLOC (Driving-Terms-Based Linear Optics Characterization/Correction) originates. At NSLS-II, a lattice corrected with DTBLOC was estimated to have beta-beating of <1%, dispersion errors of ~1 mm, and emittance coupling ratio on the order of 10-4.
 
poster icon Poster TUPOB52 [2.206 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB52  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA4CO03 Intrinsic Landau Damping of Space Charge Modes at Coupling Resonance ion, resonance, damping, ECR 863
 
  • A. Macridin, J.F. Amundson, A.V. Burov, P. Spentzouris, E.G. Stern
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was performed at Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Using Synergia accelerator modeling package and Dynamic Mode Decomposition technique, the properties of the first transverse dipole mode in Gaussian bunches with space charge are compared at transverse coupling resonance and off-resonance. The Landau damping at coupling resonance and in the strong space charge regime is a factor of two larger, while the mode's tune and shape are nearly the same. While the damping mechanism in the off-resonance case fits well with the classical Landau damping paradigm, the enhancement at coupling resonance is due to a higher order mode-particle coupling term which is modulated by the amplitude oscillation of the resonance trapped particles.
 
slides icon Slides WEA4CO03 [3.422 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB21 Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source ion, synchrotron, scattering, storage-ring 940
 
  • A. Xiao, B.X. Yang
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB42 High Gradient S-Band Cryogenic Accelerating Structure for RF Breakdown Studies ion, cavity, cryogenics, experiment 991
 
  • A.D. Cahill, A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G.B. Bowden, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Work Supported by DOE/SU Contract DE-AC02-76-SF00515 and DOE SCGSR Fellowship
Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdowns. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape, cavity temperature, and material. Experimental and theoretical study of the effects of these parameters on the breakdown physics is ongoing at SLAC. As of now, most of the data has been obtained at 11.4 GHz. We are extending this research to S-band. We have designed a single cell accelerating structure, based on the extensively tested X-band cavities. The setup uses matched TM01 mode launcher to feed rf power into the test cavity. Our ongoing study of the physics of rf breakdown in cryogenically X-band accelerating cavities shows improved breakdown performance. Therefore, this S-band experiment is designed to cool the cavity to cryogenic temperatures. We use operating frequencies near 2.856 GHz. We present the rf design and discuss the experimental setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2IO01 Development and Application of Online Optimization Algorithms ion, injection, GUI, operation 1287
 
  • X. Huang
    SLAC, Menlo Park, California, USA
 
  Funding: DOE
Automated tuning is an online optimization process. It can be faster and more efficient than manual tuning and can lead to better performance. Automated tuning is an online optimization process. It is more efficient than manual tuning and can lead to better performance. It may also substitute or improve upon model based methods. Noise tolerance is a fundamental challenge to online optimization algorithms. We discuss our experience in developing a high efficiency, noise-tolerant optimization algorithm, the RCDS method, and the successful application of the algorithm to various real-life accelerator problems. Experience with a few other online optimization algorithms are also discussed. A performance stabilizer and an interactive optimization GUI are presented.
 
slides icon Slides FRA2IO01 [3.601 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA2IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)