Keyword: power-supply
Paper Title Other Keywords Page
MOPOB12 A High Bandwidth Bipolar Power Supply for the Fast Correctors in the APS Upgrade ion, controls, ISOL, interface 96
  • J. Wang, G.S. Sprau
    ANL, Argonne, Illinois, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPOB46 Long Pulse Solid-State Pulsed Power Systems Built to ESS Specifications ion, klystron, operation, high-voltage 165
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes, M.G. Munderville, R.E. Simpson
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
  • J. Domenge
    Sigma Phi Electronics, Wissembourg, France
  • J.L. Lancelot
    Sigmaphi, Vannes, France
  Diversified Technologies, Inc. (DTI), in partnership with SigmaPhi Electronics (SPE) has built three long pulse solid-state klystron transmitters to meet spallation source requirements. Two of the three units are installed at CEA Saclay and the National Institute of Nuclear and Particle Physics (IN2P3), where they will be used as test stands for the European Spallation Source (ESS). The systems delivered to CEA and IN2P3 demonstrate that the ESS klystron modulator specifications (115 kV, 25 A per klystron, 3.5 ms, 14 Hz) have been achieved in a reliable, manufacturable, and cost-effective design. There are only minor modifications required to support transition of this design to the full ESS Accelerator, with up to 100 klystrons. The systems will accommodate the recently-determined increase in average power (~660 kW), can offer flicker-free operation, are equally-capable of driving Klystrons or MBIOTs, and are designed for an expected MTBCF of over ten years, based on operational experience with similar systems.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUA2CO03 A Novel Technique of Power Control in Magnetron Transmitters for Intense Accelerators ion, controls, cavity, operation 271
  • G.M. Kazakevich, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Illinois, USA
  • V.A. Lebedev, W. Schappert, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The concept uses magnetrons driven by a sufficient resonant (injection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wideband phase and mid-frequency power controls is presented and discussed.  
slides icon Slides TUA2CO03 [0.714 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPOA07 IoT Application in the Control System of the BEPCII Power Supplies ion, controls, status, operation 302
  • C.H. Wang, L.F. Li, X.L. Wang
    IHEP, Beijing, People's Republic of China
  • C.P. Chu
    MSU, East Lansing, Michigan, USA
  Funding: This prject is support by NSFC(1137522)
In recent years in the development of Internet technology, the Internet of things (IoT) has begun to apply to each domain. The paper introduces the idea how to apply IoT to the accelerator control system and take the existing control system of the BEPCII power supplies as an example for IoT application. It not only introduce the status of the control system of the BEPCII power supplies, but also present a solution how to apply IoT to the existing control system. The purpose is to make the control system more intelligent and automatically identify what and where problem when the alarm of the control system of the power supplies. That means that IoT can help to automatically identify which crate and which PSC board inserted in the crates and which PSI sittiing in the power supply crates as well as the optic fiber cables between the PSCs and the PSIs. It is great convenient for the maintainer to use a mobile phone to diagnose faults and create the electronic maintenance record.
poster icon Poster TUPOA07 [0.762 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPOA30 Fermilab Switchyard Resonant Beam Position Monitor Electronics Upgrade Results ion, electron, electronics, controls 352
  • T.B. Petersen, J.S. Diamond, N. Liu, P.S. Prieto, D. Slimmer, A.C. Watts
    Fermilab, Batavia, Illinois, USA
  The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an esti-mated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have vari-able gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.  
poster icon Poster TUPOA30 [0.833 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEB4CO04 100 kW Very Compact Pulsed Solid-State RF Amplifier. Development and Tests ion, controls, rf-amplifier, vacuum 873
  • G.B. Sharkov, A.A. Krasnov, S.A. Polikhov
    NIITFA, Moscow, Russia
  • R. Cisneros, R.J. Patrick
    TMD Technologies, Middlesex, United Kingdom
  A high power solid-state RF amplifier system has been developed and tested. The modular scalable architecture of the system allows to build megawatt-range compact, robust, cost effective RF amplifiers/generators with high plug efficiency. Using a special designed technology of RF power on-board combination for several LDMOS transistors and very compact high power RF combiners, the amplifier with output power of 100 kW and duty cycle of 5% has been fit into a single 19" cabinet. The system has been tested at the output power up to 104 kW with 3.5 ms pulses. The overview of the technologies, the design of the machine, and its main subsystems is given in this talk. The test results and the market perspectives are also presented.  
slides icon Slides WEB4CO04 [19.504 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)