DESIGN OF THE HGVPU UNDULATOR VACUUM CHAMBER FOR LCLS-II

Solutions to Accelerator Vacuum System Design Challenges

Jason Lerch AES Design, Jason Carter AES Mechanical Engineering, Patric Den Hartog AES Mechanical Engineering, Greg Wiemerslage AES Mechanical Engineering Advanced Photon Source at Argonne National Laboratory

INTRODUCTION

SLAC contracted the APS to design and manufacture a 3.5-meter undulator vacuum chamber (UVC) for use in an HGVPU as part of the LCLS-II upgrade project. The design process involved solving complex challenges that are becoming commonplace in next generation accelerator projects. The following is an overview of the UVC design process with an emphasis on the structural and thermal design challenges encountered.

STRUCTURAL DESIGN

UVC

Challenges:

- Vertical orientation within undulator - Alignment fixture: Non-magnetic, more rigid than the vacuum chamber Narrow alignment and straightness tolerances across length of chamber • Straightness: $\pm 100 \ \mu m$ • Vertical position alignment precision: $< 50 \ \mu m$ - Thin wall: 0.5 mm aperture thickness • Due to beam aperture and closed gap magnet width requirements

THERMAL DESIGN

- Challenges:
 - Mitigate 3.3 $W/_m$ heat load
 - Temperature stability of ± 0.1 °C across 3.5 meter length

HGVPU Undulator Assembly

HGVPU Magnet Assembly

- Solutions:
 - Flow rate range of 2.2 3 m/s determined to be acceptable
 - Lower limit provides sufficient cooling and upper limit avoids erosion
 - Verified by FEA thermal analysis

CONCLUSIONS

A 3.5-meter length, thin walled, extruded aluminium chamber with interior water cooling was developed for the LCLS-II upgrade project. Numerous challenges were encountered during the design of the UVC. The chamber aperture thin wall needed to deform minimally to allow clear beam passage. The chamber was also required to have a small temperature change across its 3.5-meter length. FEA stress analysis was performed to ensure the chamber will not fail under vacuum and water pressure. A cooling scheme was optimized to ensure water flow is sufficient to maintain temperature without the risk of erosion and to minimize pressure drop across the chamber.

ACKNOWLEDGEMENTS

Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357 and DE-AC02-76SF00515

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

