Keyword: GUI
Paper Title Other Keywords Page
MOPOB56 Frequency Domain Simulations of Rf Cavity Structures and Coupler Designs for Co-Linear X-Band Energy Booster (CXEB) with ACE3P ion, cavity, simulation, electron 191
 
  • T. Sipahi, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
 
  Due to their higher intrinsic shunt impedance X-band accelerating structures offer significant gradients with relatively modest input powers, and this can lead to more compact light sources. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3-GHz, L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the frequency domain simulation results using the ACE3P Electromagnetic Suite's OMEGA3P and S3P for our proposed Co-linear X-band Energy Booster (CXEB) system that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structures while driven solely by the beam from the L-band system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2CO04 Vacuum Breakdown at 110 GHz ion, experiment, cavity, vacuum 275
 
  • S.C. Schaub
    MIT, Cambridge, Massachusetts, USA
  • M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  A 1.5 MW, 110 GHz gyrotron is used to produce a linearly polarized quasioptical beam in 3 μs pulses. The beam is concentrated in vacuum to produce strong electric fields on the surfaces of dielectric and metallic samples, which are being tested for breakdown threshold at high fields. Dielectrics are tested in the forms of both windows, with electric fields parallel to the surface, and sub-wavelength dielectric rod waveguides, with electric fields perpendicular to the surface. Currently, visible light emission, absorbed/scattered microwave power, and vacuum pressure diagnostics are used to detect discharges on dielectric surfaces. Future experiments will include dark current diagnostics for direct detection of electrons. Dielectrics to be tested include crystal quartz, fused quartz, sapphire, high resistivity float-zone silicon, and alumina. Metallic accelerator structures will also be tested in collaboration with SLAC. These tests will require shortening of the microwave pulse length to the nanosecond scale.  
slides icon Slides TUA2CO04 [1.826 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA2CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA27 From Relativistic Electrons to X-ray Phase Contrast Imaging ion, electron, linac, software 341
 
  • A.H. Lumpkin
    Fermilab, Batavia, Illinois, USA
  • M.A. Anastasio, A.B. Garson
    Washington University in St. Louis, St. Louis, Missouri, USA
 
  Funding: Work at Fermilab partly supported by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with the U.S.DoE. Work at Washington Univ. in St. Louis was supported in part by NSF CBET1263988.
X-ray phase contrast (XPC) imaging is an emerging technology that holds great promise for biomedical applications due to its ability to provide information about soft tissue structure *. The need for high spatial resolution at the boundaries of the tissues is noted for this process. Based on results from imaging of relativistic electron beams with single crystals **, we proposed transferring single-crystal imaging technology to this bio-imaging issue. Using a microfocus x-ray tube (17 kVp) and the exchangeable phosphor feature of the camera system, we compared the point spread function (PSF) of the system with the reference P43 phosphor to that with several rare earth garnet single crystals of varying thickness. Based on single Gaussian peak fits to the collimated x-ray images, we observed a four times smaller system PSF (21 microns (FWHM)) with the 25-mm diameter single crystals than with the reference polycrystalline phosphor's 80-micron value. Initial images of 33-micron diameter carbon fibers have also been obtained with small crystals installed. Tests with a full-scale 88-mm diameter single crystal (patent-pending configuration) are being planned.
*A. Appel, M.A. Anastasio, and E.M. Brey, Tissue Eng. Part B Rev 17 (5), 321 (2011).
**A.H. Lumpkin, et al., Phys. Rev. ST-AB 14 (6), 060704 (2011).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4CO04 Simulation of High-Power Tunable THz Generation in Corrugated Plasma Waveguides ion, plasma, laser, radiation 460
 
  • C.M. Miao, T.M. Antonsen
    UMD, College Park, Maryland, USA
  • J. Palastro
    NRL, Washington,, USA
 
  Intense, short laser pulses propagating through inhomogeneous plasmas generate terahertz (THz) radiation. We consider the excitation of THz radiation by the interaction between an ultra short laser pulse and a miniature plasma waveguide. Such corrugated plasma waveguides support electromagnetic (EM) channel modes with subluminal phase velocities, thus allowing the phasing matching between the generated THz modes and the ponderomotive potential associated with laser pulse, making significant THz generation possible. Full format PIC simulations and theoretical analysis are conducted to investigate this slow wave phase matching mechanism. We find the generated THz is characterized by lateral emission and a coherent, narrow band spectrum. A range of realistic laser pulse and plasma profile parameters are considered with the goal of increasing the conversion efficiency of optical energy to THz radiation. As an example, a fixed driver pulse (1.66 J) with spot size of 15 μ m and pulse duration of 50 fs excites approximately 83.7 μ J of THz radiation in a 500-μ m-long corrugated waveguide with on axis average density of 1018 cm-3.  
slides icon Slides TUA4CO04 [3.569 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA4CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB02 Development of the Method for Evaluation of a Super-Conducting Traveling Wave Cavity With a Feedback Waveguide ion, cavity, simulation, feedback 480
 
  • R.A. Kostin
    LETI, Saint-Petersburg, Russia
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE SBIR # DE-SC0006300
Euclid Techlabs is developing a superconducting traveling wave (SCWT) cavity with a feedback waveguide [1] and has demonstrated a traveling wave at room temperature [2] in a 3-cell SCTW cavity [3]. A special method described in this paper was developed for cavity evaluation. It is based on an S-matrix approach. The cavity tuning procedure based on this method is described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB07 Dielectrically-Loaded Waveguide as a Short Period Superconducting Microwave Undulator ion, undulator, operation, brightness 897
 
  • R. Kustom, A. Nassiri, K.J. Suthar, G.J. Waldschmidt
    ANL, Argonne, Illinois, USA
 
  The HEM12 mode in a cylindrical, dielectrically-loaded waveguide provides E and H fields on the central axis that are significantly higher than the fields on the conducting walls. The waveguide is designed to operate near its cutoff frequency where the wavelength and phase velocity vary significantly to enable tuning of the equivalent undulator wavelength. The operating frequency would range from 18 - 24 GHz. It would be possible to generate coherent, high-energy 45 - 65 KeV x-rays from the fundamental mode which are tunable over a 20% energy range by changing the source frequency while maintaining constant field strengths. The x-ray brilliance of the microwave undulator would be 3 times higher at 56-KeV and 7 times higher at 66 KeV than what is available with the APS 1.8 cm period Superconducting Wire Undulator. Since the loss factor of sapphire is very low at cryogenic temperatures, it is possible to consider a superconducting microwave undulator, although resistive losses of ~200 to 700 W/m may be a bit too high for CW operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB41 Quality Factor in High Power Tests of Cryogenic Copper Accelerating Cavities ion, cavity, ECR, experiment 987
 
  • A.D. Cahill, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V.A. Dolgashev, M.A. Franzi, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Funding: Research made possible by DOE SCGSR and DOE/SU Contract DE-AC02-76-SF00515
Recent SLAC experiments with cryogenically cooled 11.4 GHz standing wave copper accelerating cavities have shown evidence of 250 MV/m accelerating gradients with low breakdown rates. The gradient depends on the circuit parameters of the accelerating cavity, such as the intrinsic and external quality factors (Q0, QE). In our studies we see evidence that Q0 decreases during rf pulse at 7-70 K. This paper discusses experiments that are directed towards understanding the change of Q0 at high power.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB41  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA08 Transformer Ratio Enhancement Experiment Based on Emittance Exchanger in Argonne Wakefield Accelerator ion, wakefield, experiment, emittance 1115
 
  • Q. Gao, H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • M.E. Conde, D.S. Doran, W. Gai, W. Liu, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The transformer ratio is an important figure of merit in collinear wakefield acceleration, it indicates the efficiency of energy transferring from drive bunch to witness bunch. Higher transformer ratio will significantly reduce the length of accelerator thus reducing the cost of accelerator construction. However, for the gaussian bunch, this ratio has its limit of 2. To obtain higher transformer ratio, one possible method is to tailor the beam current profile to specific shapes. One method of beam shaping is based on emittance exchange, which has been demonstrated at the Argonne Wakefield Accelerator. Its principle is to tailor the beam transversely using a mask then exchange the beam's transverse profile and longitudinal profile. In this paper, we describe our efforts to optimize the beamline and mask in order to generate a triangular beam with quadratic head, which has a transformer ratio of 6.4. We also present our design of a dielectric slab based accelerating structure to measure the transformer ratio. Finally, we discuss an experiment for this high transformer ratio at Argonne Wakefield Accelerator Laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2IO01 Development and Application of Online Optimization Algorithms ion, injection, coupling, operation 1287
 
  • X. Huang
    SLAC, Menlo Park, California, USA
 
  Funding: DOE
Automated tuning is an online optimization process. It can be faster and more efficient than manual tuning and can lead to better performance. Automated tuning is an online optimization process. It is more efficient than manual tuning and can lead to better performance. It may also substitute or improve upon model based methods. Noise tolerance is a fundamental challenge to online optimization algorithms. We discuss our experience in developing a high efficiency, noise-tolerant optimization algorithm, the RCDS method, and the successful application of the algorithm to various real-life accelerator problems. Experience with a few other online optimization algorithms are also discussed. A performance stabilizer and an interactive optimization GUI are presented.
 
slides icon Slides FRA2IO01 [3.601 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA2IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)