A NUMERICAL STUDY OF THE MICROWAVE

INSTABILITY AT APS

BNL, NSLS-II, Upton, New York, 11973-5000, U.S.A. A. Blednykh, G. Bassi, V. Smalyuk ANL, Argonne, IL 60439, U.S.A.

R. R. Lindberg

Two particle tracking codes, ELEGANT and SPACE, have been used to simulate the microwave instability in the APS storage ring. The total longitudinal wakepotential for the APS vacuum components, computed by GdfidL, has been used as the input file for the simulations. The numerical results have energy spread measurements for different single-bunch intensities. The total longitudinal wakepotential has been computed by the GdfidL code for the APS vacuum components distributed around the ring. The longitudinal wakepotential for a 1mm bunch length is shown in Fig. 1. This wakepotential was simulated by Y.-C. Chae.

1 dolo 1. Mani 1 n o otorage tring i arametero [5]
--

Energy	E[GeV]	7
Revolution Period	$T_0[\mu s]$	3.682
Momentum Compaction	α	2.82×10^{-4}
Energy Loss	U[MeV]	5.353
RF Voltage	V [MV]	9
Synchrotron Tune	ν_s	0.0078
Damping Time	$\tau_{x,v/s} [ms]$	9.6/4.8

Energy spread vs single bunch current measurements in APS at RF voltage 9.4MV

fit obtained during several measurements in APS.

with the ELEGANT (green dots) and SPACE (blue dots) codes.

