
Vacuum Breakdown
at 110 GHz

Samuel Schaub, M. A. Shapiro, R. J. Temkin

Massachusetts Institute of Technology

October 11, 2016

NAPAC2016                                              TUA2CO04



Motivations and Goals

 Millimeter-wave RF LINAC structures
have been the subject of recent research
oWakefield structures tested by SLAC

at FACET facility1

o THz-driven electron LINAC
demonstrated at MIT2

 There is a lack of experimental data on breakdown thresholds 
of materials at these frequencies (> 100 GHz)
o Due to historical lack of sources

oMegawatt gyrotrons have been developed for fusion applications

 Goals: Test breakdown thresholds of materials in physically 
simple geometries using a 110 GHz, 1.5 MW gyrotron
oMultipactor breakdown of dielectrics

o RF breakdown in simple metallic cavity in collaboration with SLAC3
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Experiment Overview

 Gyrotron
o Up to 1.5 MW

o 110 GHz
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o 3 μs pulses

o 1 Hz rep. rate

o Gaussian beam output in free space



Experiment Overview
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 Diagnostics
o Forward and Reverse RF diode

o Pressure Monitor

o Visible light CCD imager
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Parallel E-field Configuration

 Structure placed in 
vacuum chamber

 Fabry-Pérot cavity
o Cavity formed between a 

layered dielectric mirror 
and a spherical mirror

o Dielectric mirror

 Alternating layers of 
polished HRFZ Si and 
fused quartz wafers

 25.4 mm diameter

 Gaussian microwave 
beam incident from +𝑥
o Linearly polarized in 𝑦

o Focused to 2 mm spot 
size radius (0.7 λ)
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Parallel E-field Configuration
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 1 MW incident from right

 150 MV/m on sample surface (< 30 MV/m on 
mirrors)

 Samples to be tested: crystal quartz, fused quartz, 
sapphire, 96% alumina, 99.9% alumina,

HRFZ silicon
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Low Power Test
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Perpendicular E-Field Configuration
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 Gaussian beam incident from 
+ 𝑥 direction

o Linearly polarized in 𝑦 direction

o Focused to 1.5 mm spot size 0.55𝜆

o Focused on end of thin dielectric rod

 Sample is thin dielectric rod

o 0.5 mm diameter for 99.8% alumina and 
sapphire

o 0.8 mm diameter for fused quartz

 ~90% coupling to single propagating 
mode of dielectric rod waveguide

 Mode squeezed between two 
polished 99.9% alumina plates

o Plates metalized with silver on sides 
away from sample
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Perpendicular E-Field Configuration
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 HE11 mode on a dielectric rod:
o E-field concentrated on two sides

o E-field lines form loops
along rod

o Power density concentrated along surface 
of thin rods
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Perpendicular E-Field Configuration

10

 Gaussian beam incident 
from left
o 1 MW of power

 Fields polarized in 𝑦
o Strong E-fields on sides of

rod (away from alumina
plates)

Alumina plates squeeze
magnetic field of dielectric
rod waveguide mode
o Plates are metalized on sides

away from the rod

o Cutoff mode near end of 
plates

o Creates standing wave on rod

 Max field on surface
of sapphire and alumina 
rods:
125 MV/m (lower for

fused quartz)



Perpendicular E-Field Configuration
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High Power Testing (Perp E-field)

 High power testing has 
begun on the dielectric rod 
(perpendicular E-field) 
configuration

 Base vacuum pressure

o1 × 10−8 Torr

 Breakdown detection

o Pressure rises to
a few × 10−7 Torr

 Breakdown visible on 
reverse power RF diode trace
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Reflected Power Traces



High Power Testing (Perp E-field)
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 Visible light images capture breakdowns

 Breakdowns occur reproducibly at the same locations along the rod
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High Power Testing (Perp E-field)
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 First tests on 99.8% alumina rod

 Currently tested up to 25 MV/m fields
o Breakdowns from outgassing as power is ramped up

o Breakdown rate at a given power drops to zero after < 100 shots

o Threshold for multipactor breakdown not yet reached

 Testing is ongoing

 Current result: for 99.8% alumina with E-fields perpendicular to the 
surface, multipactor breakdown threshold > 25 MV/m



Future Work

 Continue high power tests on dielectric rods (Perpendicular E-field)

 Begin high power tests on dielectric windows (Parallel E-field)

 Install additional diagnostics
o Photodiode

o Dark current probe

 Test RF breakdown threshold in metallic cavity in collaboration 
with SLAC
o S. Tantawi group

o Gaussian beam to TM01 mode converter and TM01 cavity designed by SLAC

oWill require shortening gyrotron pulse from 3 μs to ns timescale
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o Spectroscopy

o ICCD imager (2 ns exposures)



Summary

 Experiments have been designed to test multipactor breakdown thresholds 
of dielectrics

o Two designs for testing fields either parallel to or perpendicular to the sample surface

o Testing with high power, 110 GHz has begun

oMaterials to be tested

 Parallel E-field: crystal quartz, fused quartz, 96% and 99.9% alumina, sapphire, HRFZ Silicon

 Perpendicular E-field: fused quartz, 99.8% alumina, sapphire

o Currently functioning diagnostics

 Forward and reverse power RF diodes, pressure monitor, visible light CCD imager

oAdditional diagnostics will be added

 Photodiode for time resolution

 Dark current probe

 More high power testing to be done

 Future testing of metallic structures will be done in collaboration with 
SLAC
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