Keyword: diagnostics
Paper Title Other Keywords Page
MOPOB25 The Use of KF Style Flanges in Low Particlulate Applications ion, vacuum, hardware, cavity 124
 
  • K.R. Kendziora, J.J. Angelo, C.M. Baffes, D. Franck, R.J. Kellett
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab, Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
As SCRF particle accelerator technology advances the need for 'low particulate' and 'particle free' vacuum systems becomes greater and greater. In the course of the operation of these systems, there comes a time when vari-ous instruments have to be temporarily attached for diag-nostic purposes: RGAs, leak detectors, and additional pumps. In an effort to make the additions of these instru-ments easier and more time effective, we propose to use KF style flanges for these types of temporary diagnostic connections. This document will describe the tests used to compare the particles generated using the assembly of the, widely accepted for 'particle free' use, conflat flange to the proposed KF style flange, and demonstrate that KF flanges produce less particles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA13 First Test Run for High Density Material Imaging Experiment Using Relativistic Electron Beam at the Argonne Wakefield Accelerator ion, electron, target, experiment 311
 
  • Y.R. Wang
    AAI/ANL, Argonne, Illinois, USA
  • S. Cao, X.K. Shen, Z.M. Zhang, Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • M.E. Conde, D.S. Doran, W. Gai, W. Liu, J.G. Power, J.Q. Qiu, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  A test facility, AWA, has been commissioned and in operation since last year. It can provide beam of several bunches in a train of nano-seconds and 10s of nC with energy up to 70 MeV. In addition, the AWA can accommodate various beamlines for experiments. One of the proposed experiments is to use the AWA beam as a diagnostics for time resolved high density material, typically a target with high Z and time dependent, imaging experiments. When electron beam scatters after passing through the target, and the angular and energy distribution of beam will depend on the density and thickness of the target. A small aperture is used to collimate the scattered electron beam for off axis particles, and the target image will be detected by imaging plate. By measuring the scatted angle and energy at the imaging plate would yield information of the target. In this paper, we report on the AWA electron imaging (EI) system setup, which consist of a target, imaging optics and drift transport. The AWA EI beam line was installed on June, 2016 and the first test run was performed on August, 2016. This work will have implication on the high energy density physics and even future nuclear fusion studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA02 Progress Toward an Experiment at AWAKE* ion, laser, plasma, experiment 687
 
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE experimental program is scheduled to start at the end of 2016. The aim of the first experiments is to detect and study the self-modulation instability (SMI) of the long proton bunch ~12cm in a plasma with wakefields of period of ~1.2mm. The occurrence of SMI results in the formation of a charge core surrounded by a halo in the time-integrated images of the proton bunch transverse profile. Transverse profiles are obtained from scintillator screens and from optical transition radiation (OTR). The OTR is time resolved using a ps-resolution streak camera to determine the start of the wakefields along the bunch on a slow time scale (~ns), i.e., the location of the seeding of the SMI generated by the ionizing laser pulse. The modulation period is measured using the faster time scale (~ps). Coherent transition radiation (CTR) is analyzed by a heterodyne system to also yield the modulation frequency. Later experiments will sample the wakefields generated by externally injecting low-energy (~15MeV) electrons expected to be accelerated to the GeV energy level over the 10m-long plasma. Progress toward the completion of the experimental set-up will be presented.
*for the AWAKE Collaboration
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)