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Abstract

We discuss numerical methods for computation of wake

fields excited by short bunches in accelerators. The numeri-

cal methods to implement a low-dispersive scheme, confor-

mal approximation of the boundaries, surface conductivity,

and indirect wake potential integration are reviewed. The

implementations of these methods in electromagnetic code

ECHO for 2D and 3D problems are presented. Several ex-

amples of application of the code to important problems in

the European Free Electron Laser project and in the Linac

Coherent Light Source (LCLS) project are considered.

INTRODUCTION

This paper gives an overview of our research in numeri-

cal methods for electrodynamics and accelerator physics. It

presents original low-dispersive numerical methods (TE/TM

implicit and explicit schemes) for calculation of electromag-

netic fields in accelerators. The developed algorithms al-

low for calculation of electromagnetic fields of ultra-short

bunches in very long structures. In order to reduce the numer-

ical errors the Uniformly Stable Conformal (USC) algorithm

is developed and described. It allows for a conformal ge-

ometry modeling without time step reduction. Combination

of both described approaches (the low-dispersive numerical

scheme and the conformal technique without time step re-

duction) gives high quality results even on a coarse mesh

with a large time step. Indirect method for wake potential

integration is reviewed. The algorithms are implemented in

code ECHO which is available at [1].

NUMERICAL METHODS

In order to simulate self-consistent dynamics of the

charged particles, we need to be able to solve at least two

kinds of problems: (i) to calculate the electromagnetic field

for the given charges and currents and (ii) to solve equations

of motion of charged particle in the given electromagnetic

field. In this paper we consider the approaches to effective

solution of the first problem.

Low-Dispersive Numerical Schemes

The particle-in-cell (PIC) method [2] is an effective ap-

proach for simulation of beam dynamics in accelerators. In

this model one emulates nature by following the motion of a

large number of charged particles in their self-consistent elec-

tric and magnetic fields. The electromagnetic fields in many

PIC codes are computed using the finite-difference time

domain (FDTD) method [3], [4]. As any numerical mesh

approach, the FDTD method suffers from an anisotropic
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numerical dispersion. The numerical wave phase speed is

slower than the physical one. Hence, the high energy parti-

cles can travel in vacuum faster than their own radiation. This

effect is commonly referred as numerical Cherenkov radia-

tion [5], which (due to its accumulative character) corrupts

the simulation. Hence, the electromagnetic field computa-

tion for short relativistic bunches in long structures remains

a challenging problem even with the fastest computers.

Several approaches [5]- [9] have been proposed to re-

duce the accumulated dispersion error of large-scale three-

dimensional simulations for all angles and for a given fre-

quency range. These methods require the usage of larger

spatial stencils and a special treatment of the material inter-

faces. The increased computational burden justifies itself for

computational domains large in all three dimensions. How-

ever, in the accelerator applications the domain of interest is

very long in the longitudinal direction and relatively narrow

in the transverse plane. Additionally, the electromagnetic

field changes very fast in the direction of bunch motion but

is relatively smooth in the transverse plane. Hence, it is

extremely important to eliminate the dispersion error in the

longitudinal direction for all frequencies. If the numerical

dispersion is suppressed then a quite coarse mesh and mod-

erate computational resources can be used to reach accurate

results. It was shown in wake field calculations by A. No-

vokhatski [10] and in plasma simulations by A. Pukhov [11].

As it is well known, the FDTD method at the Courant

limit is dispersion free along the grid diagonals and this prop-

erty can be used effectively in numerical simulations [12].

However, the only reasonable choice in this case is to take

equal mesh steps in all three directions. Alternatively, a

semi-implicit numerical scheme without dispersion in the

longitudinal direction with a simpler conformal treatment

of material interfaces and the usage of non-equidistant grids

has been developed in [13]- [15].

The scheme described in [10, 14] allows to solve the

scalar problem and to calculate the wake potential for

fully axially symmetric problems with staircase approx-

imation of the boundary. In [15], a three-level scheme

R(yn+1 − 2yn
+ yn−1) + Ayn

= fn for the vectorial problem

was suggested. Our scheme is based on a second order hy-

perbolic wave equation for vector potential. A modification

of the USC method [16] is used to avoid the “staircase”

problem and to obtain a second order convergent algorithm.

However, the operator R in this scheme is not self-conjugate;

and therefore an “energy” conservation cannot be proven

theoretically by the standard techniques [17]. Additionally,

the scheme is not economical for general three-dimensional

geometries. The last drawback can be overcome by splitting

methods [17]. However, the absence of a theoretical proof
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for an energy conservation has stimulated us to look for an

alternative approach in the three-dimensional case.

In paper [18], a new two-level implicit economical con-

servative scheme for electromagnetic field calculations in

three dimensions is presented. The scheme does not have

dispersion in the longitudinal direction and is staircase-free

(second order convergent). Unlike the FDTD method [3]

and the scheme developed in [15], the new method is based

on a TE/TM-like splitting of the field components in time.

Additionally, it uses an alternating direction splitting of the

transverse space operator that renders the scheme compu-

tationally as effective as the conventional FDTD method.

Unlike the FDTD ADI [19] and low-order Strang [20] meth-

ods, the splitting error in our scheme is only of fourth order.

The new scheme assures energy and charge conservation.

Additionally, the usage of damping terms allows suppress-

ing a high frequency noise generated due to the transverse

dispersion and current fluctuations. The dispersion relation

of the damping scheme is derived and analysed. Numerical

examples show that the new scheme is much more accurate

in long-time simulations than the conventional FDTD ap-

proach. For axially symmetric geometries, the new scheme

performs two times faster than the scheme suggested in [15].

Other methods have been developed in [21,22]. However,

all these approaches loose in simplicity, efficiency and mem-

ory demands compared to Yee’s scheme [3]. In paper [23]

we present a scheme which competes with Yee’s algorithm.

The scheme does not have dispersion in the axis direction. It

is based on a TE/TM-like splitting of the field components

in time. It is simpler and faster than the implicit version,

introduced earlier in [18]. The numerical effort is scaled as

5/3 compared to Yee’s algorithm for the same time step. But

the explicit scheme allows for a larger time step than Yee’s

algorithm. With such choice the explicit TE/TM scheme

requires only 18% more computational time, while the mem-

ory demands remain the same. The explicit character of the

new scheme allows for USC method (see next section) to

reach the second order convergence and the scheme can be

parallelized easily. A version of this explicit scheme for ro-

tationally symmetric structures is free from the progressive

time step reducing for higher order azimuthal modes as it

takes place for conventional Yee’s FDTD method used in

the most popular accelerator codes [24, 25].

Figure 1: Wake potentials obtained by different methods.

As an example we consider a structure consisting of the

20 TESLA cells bounded by infinite ingoing and outgoing

pipes. Fig. 1 shows the longitudinal wake potential

W‖(x, y, s) = Q−1

∫ ∞

−∞
[Ez(x, y, z, t)]t=(z−s)/cdz, (1)

for a Gaussian bunch with an RMS length σ = 1mm mov-

ing on the axis. The solid line (POT-2.5D) corresponds

to the reference solution obtained with the vector potential

method [15]. The two other lines show results obtained

with different mesh resolutions from the TBCI code [25]

based on the classical Yee’s scheme (E/M-2.5D). The oscil-

lations that appear are due to the dispersion error of Yee’s

scheme. The gray points represent the result obtained by the

three-dimensional TE/TM scheme. It can be seen that the

three-dimensional TE/TM scheme produces very accurate re-

sults even on the coarse mesh. Indeed, the three-dimensional

code uses only 2.5 mesh points per σ in the longitudinal

direction. In the transverse direction the mesh steps are even

three times larger.

Conformal Mesh Methods

In the past decades most of the research on FDTD has

been focused on overcoming the staircase problem [26] of

the conventional algorithm. These attempts have resulted

in the development of various modified versions of FDTD.

However, many of these approaches require a complicated

distorted-mesh information and demand to reduce the time

step due to the reduction of the effective mesh step sizes near

the boundary. In [27, 28] two Conformal FDTD algorithms

without time step reduction have been introduced. In some

cases they have a better accuracy than the conventional stair-

case approach, but the convergence remains of first order.

Another approach based on interpolation of the fields has

been introduced in [29]. The algorithm is second order con-

vergent, but a generalization to 3D is not straightforward.

In [30] a Fictitious Domain approach is described, which

also has only first order convergence.

In paper [16] we have introduced a new stable second order

convergent algorithm on Cartesian grids without time step

reduction, Uniformly Stable Conformal (USC) method. Our

algorithm is introduced in context of the Finite Integration

Technique [31] and is based on the Partially Filled Cells

(PFC) scheme [32, 33]. The USC method is a new stable

second order convergent algorithm on Cartesian grid.

The main drawback of the USC algorithm is the usage

of extended stencils near to the boundary (exploiting of

non-diagonal material matrices). Motivated by the need for

a simplification of USC, both in terms of implementation

effort and intuitive understanding, we present in [34] a new

Simplified Conformal (SC) scheme. It does not use extended

stencils, but at the same time it remains accurate and stable

without time step reduction. The new scheme is not second

order convergent for general geometries. However, it is

much more accurate than the “staircase” method. Numerical

tests show a second order convergence of the new scheme
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on moderate meshes. Hence, as our experience shows, in

practical examples the scheme has the same level of accuracy

as the more complicated USC method. Like the USC scheme

the new method is a fully three-dimensional technique, with a

much simpler realization. The convergence of the algorithm

without the need to reduce the time step is analyzed on

several numerical examples in two and three dimensions.

Figure 2: Geometric interpretation of weighting procedure.

Figure 3: Convergence of different methods.

Figure 4: Longitudinal wake potential of tapered collimator.

A geometric interpretation of the weights defined by the

USC procedure is presented in Fig. 2 and described in de-

tails in [34]. To check the convergence of the USC and SC

schemes without reduction of the time step we consider two-

dimensional numerical examples: resonant oscillations in a

square and a ring. In the validation examples we set an initial

field in the entire calculation domain corresponding to an

analytically determined eigensolution [34] and start the time

stepping-procedure. After a (long enough) period of time

we compare the numerical solution with the exact one. For

simplicity we use a series of equidistant meshes. Our first

example is a perfectly conducting ring. The magnetic field

of the TE mode is compared to the numerical solution after

a period of time T = c−1a
√

2 , where a is the exterior radius

of the ring. The relative error δ of the numerical obtained

magnetic field is shown in Fig. 3 by a solid black line for

the USC scheme. The grey line shows results for the new

SC scheme. The convergence of PFC scheme [33] is shown

by a line with circles, and for the staircase approximation it

is shown by line with squares. As we can see the new SC

scheme shows very accurate results and near second order

convergence. Fig. 3(right) shows a more stringent test: a per-

fectly conducting square rotated by the angle relative to the

x-axis. The magnetic field of the TE mode is compared to

the numerical solution after a period of time T = c−1d/
√

2,

where d is the diagonal of the square. Here, the SC scheme

shows a first order convergence. However, the accuracy of

the scheme is one order of magnitude better than of the stair-

case approach. In all examples the USC scheme, as expected,

shows second order convergence.

Finally, we test the SC scheme on the example of a three-

dimensional rectangular collimator shown in Fig. 4 (with

inner aperture b ∗ a, b is not indicated in the figure). Again,

we use the SC method with semi-implicit scheme [22] that

allows to leave the longitudinal edges of the mesh as accu-

rate as in PFC scheme and to restrict the modification only

to edges in transverse plane. Fig. 4 shows the results for

the monopole wake field of the relativistic Gaussian bunch

moving on the axis. It compares the result of the staircase

scheme to the one obtained with the new SC scheme. The ge-

ometric parameters (a = 38mm, L = 103.8 mm and c = 0.4

mm, b = 1.4mm) describe one of the collimators used in

experiments at SLAC. With only 5 points per bunch length

σ = 1mm, the new SC scheme gives much more accurate

result than the staircase scheme.

Indirect Methods for Wake Potential Integration

For short bunches, a long-time propagation of the electro-

magnetic field in the outgoing vacuum chamber is required

to take into account the scattered fields which will reach the

bunch at later times. To drastically reduce the computational

time and avoid numerical error accumulation, several indi-

rect integration algorithms were developed for rotationally

symmetric geometries [35]- [38].

Figure 5: Contour C−1 for direct integration and cross-

section Ω⊥
out for indirect integration algorithm

For three-dimensional structures the indirect integration

algorithm was known only for cavity-like structures [36].

Papers [39], [40] introduce a new general algorithm for the

treatment of arbitrary three-dimensional structures. Several

WEA1IO02 Proceedings of NAPAC2016, Chicago, IL, USA ISBN 978-3-95450-180-9

644Co
py

rig
ht

©
20

16
CC

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

5: Beam Dynamics and EM Fields



numerical examples are presented in [39] to illustrate the

accuracy and efficiency of the new method.

Paper [39] shows how to replace the improper integral in

Eq.(1) by proper integral. The longitudinal wake potential

can be written as

QW‖(x, y, s) =
∫
C−1

[Ez(x, y, z, t)]t=(z−s)/cdz + u(x, y, s),

where the function u(x, y, s) describes the impact of the radi-

ated field on the bunch in the outgoing waveguide (path C0

in Fig. 5 . It is proven in [39] that this function can be found

from the solution of the Poisson equation in cross-section

Ω
⊥
out . The same can be done for the ingoing pipe.

The new indirect method was also used for the accurate

calculation of collimator wake fields [41]. It was interesting

to observe that the kick factor depends strongly on the length

of the interior collimator pipe, the effect not described in

the literature earlier. Note that this problem was very diffi-

cult to treat in three dimensions satisfactorily with the old

techniques.

Conductive Walls
In the following we will discuss a conformal scheme for

metallic walls with finite conductivity. ”Conformal“ means

here a better description of material interfaces in order to

reduce approximation errors and to improve the conver-

gence [16].

Figure 6: A boundary cell in the vacuum and 1D conductive

line in the metal.

For the case of rotationally symmetric geometry and usage

of the ”staircase“ approximation for the boundaries a simi-

lar scheme was described in [42]. However the ”staircase“

scheme provides only first order convergence. Attempts of

authors [42] at that time to suggest and to implement a con-

formal scheme (with second order convergence) have failed

due to instabilities of the scheme for the maximal time step

required for ”dispersion-free“ propogation. The conformal

scheme with conductivity described in [43] shows the second

order convergence and the stability. We consider the case

of high conductivity κ when only tangential components of

the field propagate in the metal. For example, for the Gaus-

sian bunch with rms length σz this condition is fulfilled if

κσz >> ǫ0, where ǫ0 is electric permittivity of the vacuum.

It can be seen fom Fig. 6 that at the boundary cells there are

two tangential components of the electric field which should

be updated at each time step. A detailed discussion of this

approximation and its equivalence to the surface impedance

boundary condition can be found in [33], [42].

In order to obtain second order convergence and avoid

time step reduction, we use conformal method with enlarged

boundary cells in the same way as described in [15]. How-

ever, for the stability of the conformal scheme it was crutial

to use the full interpolation scheme with eight weights [16].

Figure 7: Longitudinal wake potential of tapered collimator.

As an example problem we consider a symmetric, tapered

collimator (see Fig. 4). The dimensions are: width and

height of large pipe a = 10 cm, length of tapers L = 5 cm;

height of the minimum gap b = 2 cm and c = 12 cm. Code

ECHO2D is capable of modeling structures with metallic

walls of finite conductivity. The tapered walls and the walls

of the minimum gap section are taken to have conductivity

σ = 100 S/m, while the remaining surfaces are assumed to

be perfectly conducting. In the left plot of Fig. 7 we compare

the longitudinal wake for this collimator with one that has the

same geometry but is perfectly conducting. The Gaussian

bunch in the simulations has an rms length σz = 0.25 cm.

Both wakes were obtained with ECHO2D. In the right plot

of Fig. 7 we compare the ECHO2D wake potential with the

one obtained using a fully three-dimensional, commercially

available code CST [44]. The good agreement between the

results indicates a good accuracy of the conformal meshing

and the resistive wall modeling in ECHO2D.

CODE ECHO

In this section we review different modules of code ECHO.

Codes ECHOz1 and ECHOz2 for Rotationally
 Symmetric Geometries

The code ECHOz1 is a code optimized for fully rotation-

ally symmetric problems (only monopole mode). It is based

on second order scalar wave equation as described in [15].

The code ECHOz2 is a code optimized for rotationally sym-

metric geometries. It calculates any azimuthal mode for

off-axis bunch. It is based on TE/TM conformal scheme

with conductivity as described in [18,43]. The both codes

are stand-alone Windows applications with Graphical User

Interface (GUI) written in Microsift Visual C with MFC.

Code ECHOz2 can treat conductive walls.
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Code ECHO2D for Rectangular Geometry
The code ECHO2D is a code optimized for rectangular

and rotationally symmetric geometries. Under rectangular

geometries we mean structures having rectangular cross-

section, where the height can vary as function of longitudinal

coordinate but the width and side walls remain fixed. For

such structures, we have derived a Fourier representation of

the wake potentials through one-dimensional functions.The

computation resource requirements for this approach are

moderate and comparable to those for finding the wakes in

2D rotationally symmetric structures. Numerical examples

obtained with the new code are presented in [43]. The code

is parallelized to calculate several modes simultaneously. It

is based on TE/TM conformal scheme with conductivity as

described in [43]. It is a console application in C++ compiled

for Windows, Linux and MAC OS. The post-processing can

be done with Matlab scripts.

Code ECHO3D for Arbitrary Geometry

Figure 8: Workflow for ECHO3D.

Recently we have done release of code ECHO3D for

arbitrary perfectly conducting geometries. The workflow

diagram is shown in Fig. 8. The free source code FreeCAD

[45] can be used for creating of STL description of 3D

geometry. A short manual with several examples including

the TESLA cavity with RF couplers can be found at [1]. The

code is based on TE/TM conformal scheme. The current

version is non-parallelized but we hope to implement the

parallelization in the next release.
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