Keyword: proton
Paper Title Other Keywords Page
MOA3IO01 High Energy Coulomb Scattered Electrons Detected in Air Used as the Main Beam Overlap Diagnostics for Tuning the RHIC Electron Lenses ion, electron, alignment, detector 20
 
  • P. Thieberger, Z. Altinbas, C. Carlson, C. Chasman, M.R. Costanzo, C. Degen, K.A. Drees, W. Fischer, D.M. Gassner, X. Gu, K. Hamdi, J. Hock, Y. Luo, A. Marusic, T.A. Miller, M.G. Minty, C. Montag, A.I. Pikin
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A new type of electron-ion beam overlap monitor has been developed for the RHIC electron lenses. Low energy electrons acquire high energies in small impact parameter Coulomb scattering collisions with relativistic ions. Such electrons can traverse thin vacuum windows and be conveniently detected in air. Counting rates are maximized to optimize beam overlap. Operational experience with the electron backscattering detectors during the 2015 p-p RHIC run will be presented. Other possible real-time non-invasive beam-diagnostic applications of high energy Coulomb-scattered electrons will be briefly discussed.
Most of this material appears in an article by the same authors entitled "High energy Coulomb-scattered electrons for relativistic particle beam diagnostics", Phys. Rev. Accel. Beams 19, 041002 (2016)
 
slides icon Slides MOA3IO01 [2.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB3CO04 High Luminosity 100 TeV Proton-Antiproton Collider ion, collider, antiproton, quadrupole 45
 
  • S.J. Oliveros, J.G. Acosta, L.M. Cremaldi, T.L. Hart, D.J. Summers
    UMiss, University, Mississippi, USA
 
  The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. A 1034 cm**−2 s**−1 luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a ppbar the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 ± 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.  
slides icon Slides MOB3CO04 [1.304 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA4IO02 Recent Progress in High Intensity Operation of the Fermilab Accelerator Complex ion, booster, target, experiment 54
 
  • M.E. Convery
    Fermilab, Batavia, Illinois, USA
 
  We report on the status of the Fermilab accelerator complex. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.  
slides icon Slides MOA4IO02 [3.574 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA4IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB4IO02 ERL-Ring and Ring-Ring Designs for the eRHIC Electron-Ion Collider ion, electron, luminosity, linac 64
 
  • V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  An overview of the eRHIC project.  
slides icon Slides MOB4IO02 [6.001 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB4IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB13 Post Irradiation Examination Results of the NT-02 Graphite Fins Numi Target ion, target, radiation, operation 99
 
  • K. Ammigan, P. Hurh, V.I. Sidorov, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • D. Asner, A.M. Casella, D.J. Edwards, A.L. Schemer-Kohrn, D.J. Senor
    PNNL, Richland, Washington, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 x 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potential localized oxidation in the heated region of the target. Understanding the long-term structural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB14 Experimental Results of Beryllium Exposed to Intense High Energy Proton Beam Pulses ion, experiment, target, radiation 102
 
  • K. Ammigan, B.D. Hartsell, P. Hurh, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • A.R. Atherton
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • M.E.J. Butcher, M. Calviani, M. Guinchard, R. Losito
    CERN, Geneva, Switzerland
  • O. Caretta, T.R. Davenne, C.J. Densham, M.D. Fitton, P. Loveridge, J. O'Dell
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • V.I. Kuksenko, S.G. Roberts
    University of Oxford, Oxford, United Kingdom
  • S.G. Roberts
    CCFE, Abingdon, Oxon, United Kingdom
 
  Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN's HiRadMat facility was carried out to take advantage of the test facility's tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB23 The Radiation Damage In Accelerator Target Environments (RaDIATE) Collaboration R&D Program - Status and Future Activities ion, radiation, target, experiment 117
 
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments), founded in 2012, has grown to over 50 participants and 11 institutions globally. The primary objective is to harness existing expertise in nuclear materials and accelerator targets to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current activities include post-irradiation examination of materials taken from existing beamlines (such as the NuMI primary beam window from Fermilab) as well as new irradiations of candidate target materials at low energy and high energy beam facilities. In addition, the program includes thermal shock experiments utilizing high intensity proton beam pulses available at the HiRadMat facility at CERN. Status of current RaDIATE activities as well as future plans will be discussed, including special focus on the upcoming RaDIATE irradiation at the Brookhaven Linac Isotope Producer facility (BLIP) in which multiple materials of interest (e.g. beryllium, graphite, silicon, titanium, iridium) will simultaneously be exposed to 120 - 181 MeV proton beam to relevant radiation damage levels.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB23  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB24 Design of Main Coupler for 650 MHz SC Cavities of PIP-II Project ion, cavity, vacuum, cryomodule 121
 
  • O.V. Pronitchev, S. Kazakov
    Fermilab, Batavia, Illinois, USA
 
  Proton Improvement Plan-II at Fermilab has designed an 800MeV superconducting pulsed linac which is also capable of running in CW mode. The high energy section from 185MeV to 800MeV will be using cryomodules with two types of 650MHz elliptical cavities. Both types of cryomodules will include six 5-cell elliptical cavities. Each cavity will have one coupler. Updated design of the 650 MHz main coupler is reported.  
poster icon Poster MOPOB24 [1.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB51 High-Efficiency 500-W RF-Power Modules for UHF ion, operation, klystron, ISOL 174
 
  • F.H. Raab
    Green Mountain Radio Research, Boone, USA
 
  Funding: U.S. DoE DE-SC0002548, DE-SC0006200, and DE-SC0006237. GMRR IR&D.
GMRR has developed solid-state RF-power modules that deliver up to 650 W at frequencies from 325 to 704 MHz. The nominal output of 500 W is delivered with an overall efficiency from 79% at 704 MHz to 83% percent at 325 MHz. In contrast to conventional solid-state power amplifiers, high efficiency is maintained over a wide range of output powers; e.g., 70 percent or better for outputs of 30 W or higher. Each 500-W module contains five 120-W RF power amplifiers (PAs) and a Gysel* splitter and combiner. The class-F** PAs employ GaN FETs and produce over 120 W with efficiencies from 82-86%. A class-S modulator maintains high efficiency over nearly the entire range of amplitudes. Supporting hardware includes a control computer, DSP, low-level RF amplifiers, and drivers. The 500-W modules are intended to be building blocks of a multi-kW RF power source. A system based these modules will consume 1/3 to 1/2 of the prime power required by a system based upon klystrons or conventional solid-state amplifiers and will have significantly lower cooling requirements.
* U. H. Gysel, Int. Microwave Symp. Digest, May 12 - 14, 1975.
** F. H. Raab et al., IEEE Trans. Microwave Theory Tech., March 2002.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1IO02 Status Report on the SPIRAL2 Facility at GANIL ion, rfq, linac, experiment 240
 
  • E. Petit
    GANIL, Caen, France
 
  The GANIL SPIRAL2 project is based on the construction of a superconducting ion CW LINAC with two experimental areas named S3 ('Super Separator Spectrometer') and NFS ('Neutron For Science'). This status will report the construction of the facility and the first beam commissioning results. The perspectives of the SPIRAL2 project, with the future construction of the low energy RIB experimental hall called DESIR and with the construction of a new injector with q/A>1/6 or 1/7, will also be presented.  
slides icon Slides TUA1IO02 [22.004 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA1IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2IO01 AWAKE - A Proton Driven Plasma Wakefield Acceleration Experiment at CERN ion, plasma, electron, wakefield 266
 
  • A. Caldwell
    MPI-P, München, Germany
 
  It is the aim of the AWAKE project at CERN to demonstrate the acceleration of electrons in the wake created by a proton beam passing through plasma. The proton beam will be modulated as a result of the transverse two-stream instability into a series ofμbunches that will then drive strong wakefields. The wakefields will then be used to accelerate electrons with GV/m strength fields. The AWAKE experiment is currently being commissioned and first data taking is expected this year. The status of the experimental program is described as well as first thoughts on future steps.  
slides icon Slides TUA2IO01 [24.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA2IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA10 Cyclotrons for Accelerator-Driven Systems ion, cyclotron, neutron, target 305
 
  • T.-Y. Lee, J. Lee, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
  • C.U. Choi, M. Chung
    UNIST, Ulsan, Republic of Korea
 
  Accelerator-Driven system (ADS) can transmute long lived nuclear waste to short lived species. For this system to be fully realizable, a very stable high energy and high power proton beam (typically, 1 GeV beam energy and 10 MW beam power) is required, and preparing such a powerful and stable proton beam is very costly. Currently, the most promising candidate is superconducting linear accelerators. However, high power cyclotrons may be used for ADS particularly at the stage of demonstrating proof of principle of ADS. This paper discusses how cyclotrons can be used to demonstrate ADS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA10  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA44 Future Prospects of RF Hadron Beam Profile Monitors for Intense Neutrino Beam ion, cavity, plasma, radiation 373
 
  • Q. Liu
    Case Western Reserve University, Cleveland, USA
  • M. Backfish, A. Moretti, V. Papadimitriou, A.V. Tollestrup, K. Yonehara, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, R.P. Johnson, G.M. Kazakevich
    Muons, Inc, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
A novel beam monitor based on a gas-filled RF resonator is proposed to measure the precise profile of secondary particles downstream of a target in the LBNF beam line at high intensity. The RF monitor is so simple that it promises to be radiation robust in extremely high-radiation environment. When a charged beam passes through a gas-filled microwave RF cavity, it produces electron-ion pairs in the RF cavity. The induced plasma changes the gas permittivity in proportion to the beam intensity. The permittivity shift can be measured by the modulated RF frequency and quality factor. The beam profile can thus be reconstructed from the signals from individual RF cavity pixels built into the beam profile monitor. A demonstration test is underway, and the current results has shown technical feasibility. The next phase consists of two stages, (1) to build and test a new multi-cell 2.45 GHz RF cavity that can be used for the NuMI beamline, and (2) to build and test a new multi-cell 9.3 GHz RF cavity that can be put in service in a future beamline at the LBNF for spatial resolution. These two resonant frequencies are chosen since they are the standard frequencies for magnetron RF source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA44  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA74 The Design and Construction of a Resonance Control System for the IOTA RF Cavity ion, cavity, controls, bunching 432
 
  • G.M. Bruhaug
    ISU, Pocatello, Idaho, USA
  • K. Carlson
    Fermilab, Batavia, Illinois, USA
 
  The IOTA ring will be an advanced storage ring used for non-linear beam dynamics experiments to assist in the construction of future accelerators. This ring is being built in conjunction with the FAST electron LINAC and the HINS RFQ proton source, at Fermilab, for injection into the ring. These accelerators will generate +150 MeV electron beams and 2.5 MeV proton beams respectively. As the beams are injected into the IOTA storage ring their longitudinal profile will begin to smear out and become more uniform. This will prevent detection of beam position with a Beam Position Monitoring system (BPM). To combat this a ferrite loaded bunching cavity is being constructed. This paper details the design and construction of an automatic resonance control system for this bunching cavity.  
poster icon Poster TUPOA74 [2.604 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA74  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4CO03 Loading of Wakefields in a Plasma Accelerator Section Driven by a Self-Modulated Proton Beam ion, plasma, simulation, wakefield 457
 
  • V.K.B. Olsen, E. Adli
    University of Oslo, Oslo, Norway
  • P. Muggli
    MPI-P, München, Germany
  • J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
 
  Using parameters from the AWAKE project and particle-in-cell simulations we investigate beam loading of a plasma wake driven by a self-modulated proton beam. Addressing the case of injection of an electron witness bunch after the drive beam has already experienced self-modulation in a previous plasma, we optimise witness bunch parameters of size, charge and injection phase to maximise energy gain and minimise relative energy spread and emittance of the accelerated bunch.  
slides icon Slides TUA4CO03 [3.103 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB05 An Alternative Approach for the JLEIC Ion Accelerator Complex ion, booster, collider, linac 486
 
  • B. Mustapha, Z.A. Conway, P.N. Ostroumov, A.S. Plastun
    ANL, Argonne, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. DOE, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The current baseline design for the JLab EIC (JLEIC) ion accelerator complex is based on a pulsed superconducting linac, an 8-GeV booster followed by a dual function 20-100 GeV booster and collider ring. Both the 8-GeV booster and collider ring will use super-ferric magnets with fields up to 3 Tesla. We here propose an alternative cost-effective and low-risk design where the 8-GeV booster is replaced with a more compact 3-GeV booster using room-temperature magnets. The electron storage ring, which is part of the electron complex, will also serve as large booster for the ions, up to 11 GeV. We also propose two stages for the JLEIC. A first low-energy stage up to 60 GeV, where room-temperature magnets (up to 1.6 Tesla) will be used for the ion collider ring, to be later replaced with 6 Tesla superconducting magnets in a second stage of the project providing up to 200 GeV energy. In this second stage, the 1.6 T room-temperature magnets will replace the PEP-II magnets in the electron storage ring to boost the ions to higher energies (25 GeV or higher) for appropriate injection into the higher energy collider. Details and feasibility of the proposed plan will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB06 Accomplishments of the Heavy Electron Particle Accelerator Program ion, collider, factory, experiment 489
 
  • D.V. Neuffer, D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings
    Muons, Inc, Illinois, USA
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
The Muon Accelerator Program has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using μ storage rings for neutrinos. The key components of the muon collider scenarios are a high-intensity proton source, a multi MW target and transport system for π capture, a front end system for bunching, energy compression and initial cooling of μ's, muon cooling systems to obtain intense μ+ and μ- bunches, acceleration up to multiTeV energies, and a collider ring with detectors for high luminosity collisions. For a neutrino factory a similar system could be used but with a racetrack storage ring for ν production and without the cooling needed for high luminosity collisions. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB08 Beam Extraction from the Recycler Ring to P1 Line at Fermilab ion, extraction, kicker, MMI 497
 
  • M. Xiao
    Fermilab, Batavia, Illinois, USA
 
  The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) ) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB14 An Accurate and Efficient Numerical Integrator for Pair-Wise Interaction ion, software, operation, simulation 514
 
  • A.A. Al Marzouk, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
 
  We are developing a new numerical integrator based on Picard iteration method for Coulomb collisions. The aim is to achieve a given prescribed accuracy most efficiently. The integrator is designed to have adaptive time stepping, variable order, and dense output. It also has an automatic selection of the order and the time step. We show that with a good estimation of the radius of convergence of the expansion, we can obtain the optimal time step size. We also show how the optimal order of the integration is chosen to maintain the required accuracy. For efficiency, particles are distributed over time bins and propagated accordingly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB21 MuSim, A Graphical User Interface for Multiple Simulation Codes ion, simulation, interface, resonance 535
 
  • T.J. Roberts, Y. Bao
    Muons, Inc, Illinois, USA
  • Y. Bao
    UCR, Riverside, California, USA
 
  MuSim is a user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parameterized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer, allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline 3.02, MCNP 6.1, and MAD-X; more are coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB55 Optimize the Algorithm for the Global Orbit Feedback at Fixed Energies and During Acceleration in RHIC ion, feedback, acceleration, lattice 612
 
  • C. Liu, R.L. Hulsart, K. Mernick, R.J. Michnoff, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
To combat triplets vibration, the global orbit feedback system with frequency about 10 Hz was developed and en- gaged in operation at injection and top energy in 2010, dur- ing beam acceleration in 2012 at RHIC. The system has performed well with keeping 6 out of 12 eigenvalues for the orbit response matrix. However, we observed correc- tor current transients with the lattice for polarized proton program in 2015 which resulted in corrector power supply trips. In this report, we will present the observation, an- alyze the cause and also optimize the feedback algorithm to overcome the newly emerged problem with the feedback system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB55  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB56 The eRHIC Ring-Ring Design ion, electron, luminosity, dipole 616
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A.V. Fedotov, W. Fischer, Y. Hao, A. Hershcovitch, Y. Luo, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  The ring-ring version of the eRHIC electron-ion collider design aims at providing electron-proton collisions with a center-of-mass energy ranging from 32 to 141 GeV at a luminosity reaching 1033 cm-2 sec-1. This design of the double-ring collider also supports electron-ion collisions with similar electron-nucleon luminosities, and is upgradeable to 1034 cm-2 sec-1 using bunched beam electron cooling of the hadron beam. The baseline luminosities are achievable using existing technologies and beam parameters that have been routinely achieved at RHIC in hadron-hadron collisions or elsewhere in e+e collisions. This minimizes the risk associated with the challenging luminosity goal and is keeping the technical risk of the e-RHIC electron-ion collider low. The latest design status will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB62 Benchmark of Strong-Strong Beam-Beam Simulation of the Kink Instability in an Electron Ion Collider Design ion, electron, simulation, emittance 628
 
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California, USA
  • Y. Hao
    BNL, Upton, Long Island, New York, USA
 
  The kink instability limits the performance of a potential linac-ring based electron-ion collider design. In this paper, we report on the simulation study of the kink instability using a self-consistent strong-strong beam-beam model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB63 POSINST Simulation on Fermilab Main Injector and Recycler Ring ion, electron, dipole, simulation 632
 
  • Y. Ji
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab accelerator complex is currently undergoing an upgrade from 400kW to 700kW. This intensity could push operations into the region where electron cloud (e-cloud) generation could be observed and even cause instabilities. The POSINST simulation code was used to study how in- creasing beam intensities will affect electron cloud genera- tion. Threshold simulations show how the e-cloud density depend on the beam intensity and secondary electron yield (SEY) in the Main Injector (MI) and Recycler Ring (RR).  
poster icon Poster TUPOB63 [1.542 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB63  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA06 New Coolers for Ion Ion Colliders ion, electron, collider, gun 700
 
  • V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk, Russia
 
  For crucial contributions in the proof of principle of electron cooling, for leading contribution to the experimental and theoretical development of electron cooling, and for achievement of the planned parameters of coolers for facilities in laboratories around the world the 2016 "Robert R. Wilson Prize for Achievement in the Physics of Particle Accelerators" was awarded to Vasili Parkhomchuk. In this paper new future coolers for ion*ion collider will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA07 Neutrons and Photons Fluences in the DTL Section of the ESS Linac ion, DTL, linac, neutron 703
 
  • L. Lari, R. Bevilacqua, R. Miyamoto, C. Pierre, L. Tchelidze
    ESS, Lund, Sweden
  • F. Cerutti, L.S. Esposito, L. Lari, A. Mereghetti
    CERN, Geneva, Switzerland
  • L.S. Esposito
    ADAM SA, Geneva, Switzerland
 
  The last section of the normal conducting front end of the ESS accelerator is composed by a train of 5 DTL tanks. They accelerate the proton beam from 3.6 until 90 MeV. The evaluation of the radiation field around these beam elements gives a valuable piece of information to define the layout of the electronic devices to be installed in the surrounding tunnel area. Indeed the risk of SEE and long term damage has to be considered in order to max-imize the performance of the ESS accelerator and to avoid possible long down time. A conservative loss distribution is assumed and FLUKA results in term of neutrons and photon fluence are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA09 Proton Beam Defocusing as a Result of Self-Modulation in Plasma ion, plasma, wakefield, focusing 707
 
  • M. Turner, E. Gschwendtner, A.V. Petrenko
    CERN, Geneva, Switzerland
  • K.V. Lotov, A. Sosedkin
    Budker INP & NSU, Novosibirsk, Russia
 
  Funding: CERN
The AWAKE experiment will use a 400 GeV/c proton beam with a longitudinal bunch length of sigmqz = 12 cm to create and sustain GV/m plasma wakefields over 10 meters. A 12 cm long bunch can only drive strong wakefields in a plasma with npe = 7 x 1014 electrons/cm3 after the self-modulation instability (SMI) developed and microbunches formed, spaced at the plasma wavelength. The fields present during SMI focus and defocus the protons in the transverse plane. We show that by inserting two imaging screens downstream the plasma, we can measure the maximum defocusing angle of the defocused protons for plasma densities above npe = 5 x1014 electrons/cm3. Measuring maximum defocusing angles around 1 mrad indirectly proves that SMI developed successfully and that GV/m plasma wakefields were created. In this paper we present numerical studies on how and when the wakefields defocus protons in plasma, the expected measurement results of the two screen diagnostics and the physics we can deduce from it.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA16 Fermilab Recycler Collimation System Design ion, collimation, operation, radiation 726
 
  • B.C. Brown, P. Adamson, R. Ainsworth, D. Capista, K.J. Hazelwood, I. Kourbanis, N.V. Mokhov, D.K. Morris, M.J. Murphy, V.I. Sidorov, E.G. Stern, I.S. Tropin, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin Mo scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA18 Experimental Studies of Beam Collimation System in the Fermilab Booster ion, booster, collimation, radiation 732
 
  • V.V. Kapin, S. Chaurize, N.V. Mokhov, W. Pellico, M. Slabaugh, T. Sullivan, R. Tesarek, A.K. Triplett
    Fermilab, Batavia, Illinois, USA
 
  A two-stage collimation (2SC) system was installed in Fermilab Booster around 2004 and consists of 2 primary collimators (PrC), one for each of the horizontal and vertical planes and 3 secondary collimators (SC) each capable of acting in both planes. Presently, only SC are used as the single-stage collimation (1SC). Part of the Fermilab Proton Improvement Plan (PIP) includes a task to test 2SC for Booster operations. In this paper we describe preparatory steps to fix SC motion issues and installation of a 380μm thick aluminum foil PrC and post-processing software for beam orbit and beam loss measurements. The initial experimental results for 2SC in the vertical plane are also presented. The tuning of 2SC system was performed using fast loss monitors allowing much higher time-resolution than existing BLMs. Analysis of losses and beam transmission efficiency allow for the comparison of 1SC and 2SC schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA20 Numerical Simulations of Collimation Efficiency for Beam Collimation System in the Fermilab Booster ion, booster, collimation, simulation 735
 
  • V.V. Kapin, V.A. Lebedev, N.V. Mokhov, S.I. Striganov, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
 
  A two-stage beam collimation (2SC) system has been installed in the Fermilab Booster more than 10 years ago. It consists of two primary collimators (horizontal and vertical) and three 1.2m-long secondary collimators. The two-stage collimation has never been used in Booster operations due to uncontrolled beam orbit variations produced by radial cogging (it is required for beam accumulation in Recycler). Instead, only secondary collimators were used in the single-stage collimation (1SC). Recently introduced magnetic cogging resulted in orbit stabilization in the course of almost entire accelerating cycle and created a possibility for the 2SC. In this paper, the 2SC performance is evaluated and compared the 1SC. Several parameters characterizing collimation efficiency are calculated in order to compare both schemes. A combination of the MADX and MARS15 codes is used for proton tracking in the Booster with their scattering in collimators being accounted. The dependence of efficiency on the primary collimators foil thickness is presented. The efficiency dependence on the proton energy is also obtained for the optimal foil. The feasibility of the 2SC scheme for the Booster is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA20  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA22 nuPIL - Neutrinos from a PIon Beam Line ion, lattice, optics, detector 739
 
  • A. Liu, A.D. Bross
    Fermilab, Batavia, Illinois, USA
  • J.-B. Lagrange
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Fermilab Deep Underground Neutrino Experiment (DUNE) was proposed to determine the neutrino mass hierarchy and demonstrate leptonic CP violation. The current design of the facility that produces the neutrino beam (LBNF) uses magnetic horns to collect pions and a decay pipe to allow them to decay. In this paper, a design of a possible alternative for the conventional neutrino beam in LBNF is presented. In this design, an FFAG magnet beam line is used to collect the pions from the downstream face of a horn, bend them by  ∼ 5.8 degrees and then transport them in either a LBNF-like decay pipe, or a straight FODO beam line where they decay to produce neutrinos. Using neutrinos from this PIon beam Line (nuPIL) provides flavor-pure neutrino beams that can be well understood by implementing standard beam measurement technology. The neutrino flux and the resulting δCP sensitivity from the current version of nuPIL design are also presented in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA25 Fermilab Accelerator R&D Program Towards Intensity Frontier Accelerators: Status and Progress ion, target, radiation, cavity 745
 
  • V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  Fermilab actively carries out broad R&D program toward future Intensity Frontier accelerators which includes novel beam physics approaches tests in IOTA ring at FAST, research on cost-effective SRF and development of multi-MW beam targets. This presentation gives a high level overview of the program, motivation, status and progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA28 A Recirculating Proton Linac Design ion, linac, cavity, space-charge 752
 
  • K. Hwang, J. Qiang
    LBNL, Berkeley, California, USA
 
  The acceleration efficiency of the recirculating RF linac was demonstrated by operating electron machines. The acceleration concept of recirculating proton beam was recently proposed and is currently under study. In this paper, we present a 6D lattice design and beam dynamics tracking for a two-pass recirculating proton linac from 150 MeV to 500 MeV, which is the first section of the three acceleration steps proposed earlier. Issues covered are optimization of simultaneous focusing of two beams passing the same structure and achromatic condition under space-charge potential.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA28  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA43 Simulations of High Current Magnetic Horn Striplines at Fermilab ion, simulation, site, experiment 792
 
  • T. Sipahi, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • J. Hylen, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Both the NuMI (Neutrinos and the Main Injector) beam line, that has been providing intense neutrino beams for several Fermilab experiments (MINOS, MINERVA, NOVA), and the newly proposed LBNF (Long Baseline Neutrino Facility) beam line, which plans to produce the highest power neutrino beam in the world for DUNE (the Deep Underground Neutrino Experiment), need pulsed magnetic horns to focus the mesons that decay to produce the neutrinos. The high-current horn and stripline design has been evolving as NuMI reconfigures for higher beam power and to meet the needs of the future LBNF program. We evaluated the two existing high-current striplines for NuMI and NOvA at Fermilab by producing Electromagnetic simulations of the magnetic horns and the required high-current striplines. In this paper, we present the comparison of these two designs using the ANSYS Electric and ANSYS Maxwell 3D codes with special attention on the critical stress points. These results are being used to support the development of evolving horn stripline designs to handle increased electrical current and higher beam power for NuMI upgrades and for the LBNF experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA43  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA44 Accleration System of Beam Brightness Booster ion, space-charge, brightness, electron 796
 
  • V.G. Dudnikov
    Muons, Inc, Illinois, USA
  • A.V. Dudnikov
    BINP SB RAS, Novosibirsk, Russia
 
  The brightness and intensity of a circulating proton beam now can be increased up to space charge limit by means of charge exchange injection or by an electron cooling but cannot be increased above this limit. Significantly higher brightness can be produced by means of the charge exchange injection with the space charge compensation [1]. The brightness of the space charge compensated beam is limited at low level by development of the electron-proton (e-p) instability [2]. Fortunately, e-p instability can be self-stabilized at a high beam density. A beam brightness booster (BBB) for significant increase of accumulated beam brightness is discussed. Accelerating system with a space charge compensation is proposed and described. The superintense beam production can be simplified by developing of nonlinear nearly integrable focusing system with broad spread of betatron tune and the broadband feedback system for e-p instability suppression .
[1] V. Dudnikov, in Proceedings of the Particle Accelerator Conference, Chicago, 2001..
[2] G. Budker, et al., Sov. Atomic Energy 22, 384 (1967);
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA44  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA19 Design Considerations for Proposed Fermilab Integrable RCS ion, lattice, booster, optics 1138
 
  • J.S. Eldred, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable RCS (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA19  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA26 Analysis of the Transport of Muon Polarization for the Fermilab G-2 Muon Experiment ion, experiment, polarization, target 1158
 
  • D. Stratakis, K.E. Badgley, M.E. Convery, J.P. Morgan, M.J. Syphers, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • J.D. Crnkovic, W. Morse
    BNL, Upton, Long Island, New York, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Muon g-2 experiment at Fermilab aims to measure the anomalous magnetic moment of the muon to a precision of 140 ppb ─ a fourfold improvement over the 540 ppb precision obtained in BNL experiment E821. Obtaining this precision requires controlling total systematic errors at the 100 ppb level. One form of systematic error on the measurement of the anomalous magnetic moment occurs when the muon beam injected and stored in the ring has a correlation between the muon's spin direction and its momentum. In this paper, we first analyze the creation and transport of muon polarization from the production target to the Muon g-2 storage ring. Then, we detail the spin-momentum and spin-orbit correlations and estimate their impact on the final measurement. Finally, we outline mitigation strategies that could potentially circumvent this problem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA26  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA45 Update of the SEY Measurement at Fermilab Main Injector ion, electron, vacuum, operation 1190
 
  • Y. Ji
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
  • R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Studies of in-situ Secondary electron yield (SEY) mea- surements of material samples at the Main Injector (MI) beam pipe wall location started in 2013. [2, 3] These studies aimed at understanding how the beam conditioning of differ- ent materials evolve if they function as MI vacuum chamber walls. The engineering run of the SEY measurement test stand was finished in 2014. From 2014 to 2016 the Fermilab accelerator intensity has increased from 24 × 1012 protons to 42 × 1012 protons. The beam conditioning effect on SS316L and TiN coated SS316L has been observed throughout this period. [1] Improvement of the data acquisition procedure and hardware has been performed. A deconditioning pro- cess was observed during the accelerator annual shut down in 2016.  
poster icon Poster THPOA45 [3.113 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA48 Model of Electron Cloud Instability in Fermilab Recycler ion, electron, simulation, dipole 1197
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
 
  An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future in-tensity upgrades.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA48  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA49 Electron Cloud Trapping in Recycler Combined Function Dipole Magnets ion, electron, dipole, vacuum 1200
 
  • S. A. Antipov
    University of Chicago, Chicago, Illinois, USA
  • S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
 
  Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that combined function magnets trap the electron cloud with their magnetic field, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud in a combined function magnet is located at the beam center and up to 1% of the particles can be trapped by its magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulations allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a single clearing bunch of 1*1010 p at any position in the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA49  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA68 The First Particle-Based Proof of Principle Numerical Simulation of Electron Cooling ion, electron, simulation, emittance 1241
 
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
 
  Envisioned particle accelerators such as JLEIC demand unprecedented luminosities of 1034 cm -2 s -1 and small emittances are key to achieve them. Electron cooling, where a 'cold' electron beam and the 'hot' proton or ion beam co-propagate in the cooling section of the accelerator, can be used to reduce the emittance growth. It is required to precisely calculate the cooling force among particles to estimate accurately the cooling time. There are different methods to simulate electron cooling. We have developed a novel code, Particles' High-order Adaptive Dynamics (PHAD), for electron cooling. This code differs from other established methods since it is the first particle-based simulation method employing full particle nonlinear dynamics. In this paper we present the first results obtained that establish electron cooling of heavy ions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA68  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA3IO01 FNAL Accelerator Complex Upgrade Possibilities ion, booster, linac, cavity 1248
 
  • I. Kourbanis
    Fermilab, Batavia, Illinois, USA
 
  Proton Improvement Plan-II (PIP-II) is the centerpiece of Fermilab's plan for upgrading the accelerator complex to establish the leading facility in the world for particle physics research based on intense proton beams. PIP-II has been developed to provide 1.2 MW of proton beam power at the start of operations of the Long Baseline Neutrino Experiment (LBNE), while simultaneously providing a platform for eventual extension of LBNE beam power to >2 MW and enabling future initiatives in rare processes research based on high duty factor/higher beam power operations. PIP-II is based on the construction of a new 800 MeV superconducting linac, augmented by improvements to the existing Booster, Recycler, and Main Injector complex. PIP-II is currently in the development stage with an R&D program underway targeting the front end and superconducting RF acceleration technologies. This paper will describe the status of the PIP-II conceptual development, the associated technology R&D programs, and the strategy for project implementation.  
slides icon Slides THA3IO01 [10.115 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA3IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA3CO04 Space Charge Compensation Using Electron Columns and Electron Lenses at IOTA ion, electron, space-charge, solenoid 1257
 
  • C.S. Park, D. Milana, V.D. Shiltsev, G. Stancari, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • D. Milana
    Politecnico/Milano, Milano, Italy
 
  Funding: This work was supported by the United States Department of Energy under contract DE-AC02-07CH11359.
The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab's e-lens experiment for the space charge compensation. In addition, we will show how the IOTA e-column compensates space charge with the WARP simulations. The dynamics of proton beams inside of the e-column isunderstood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.
 
slides icon Slides THA3CO04 [42.834 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA3CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THB3CO03 Thermoacoustic Range Verification for Ion Therapy ion, target, cavity, cyclotron 1265
 
  • S.K. Patch, Y.M. Qadadha
    UWM, Milwaukee, Wisconsin, USA
  • R. Albright, P. Bloemhard, K. Campbell, A.P. Donoghue, T.L. Gimpel, A. Jackson, M.B. Johnson, M. Kireeff Covo, B. Ninemire, L. Phair, C.R. Siero, S.M. Small
    LBNL, Berkeley, California, USA
 
  Funding: We acknowledge support from a UWM Intramural Instrumentation Grant and by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231.
The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. We report correlation of the Bragg peak location with target structure, by overlaying thermoacoustic localization of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the inflector of the 88" cyclotron at Lawrence Berkeley National Lab. 2 Gy were delivered in 2 μs by a beam with peak current of 2 μA. Thermoacoustic emissions were detected by a clinical ultrasound array, which also generated a grayscale ultrasound image. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, where gas pockets can displace the Bragg peak. Experiments were performed with the cavity both empty and filled with olive oil. In the waterbath overlays of the Bragg peak agreed with Monte Carlo simulations to within 800±170 μm. Agreement within 1.3 ± 0.2 mm was achieved in the gelatin phantom, for which stopping power was estimated to first order from CT scans.
 
slides icon Slides THB3CO03 [1.156 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THB3CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB1IO02 LIGHT: A Linear Accelerator for Proton Therapy ion, linac, rfq, MMI 1282
 
  • D. Ungaro, A. Degiovanni, P. Stabile
    ADAM SA, Geneva, Switzerland
 
  ADAM, Application of Detectors and Accelerators to Medicine is a Swiss Company based in Geneva Switzerland established on 20th December 2007. ADAM was founded to promote scientific know-how and innovations in medical technology for cancer treatment. In 2007 a first partnership agreement was signed with CERN and in 2011 ADAM has been officially recognized as CERN spin-off. After the first research results other partnership agreements were signed between ADAM and CERN with the main goal of establishing a framework within which the two parties can collaborate to develop novel technologies for detectors and accelerators. Currently ADAM research activity is mainly focused on the construction and testing of its first linear accelerator for medical application: LIGHT (Linac for Image-Guided Hadron Therapy). LIGHT is an innovative linear accelerator designed to revolutionise hadron therapy facilities by simplifying the infrastructure and make them profitable from an industrial point of view while providing a better quality beam. The current design allow LIGHT to accelerate proton beam up to 230MeV with several advantages comparing to the current solutions present in the market.  
slides icon Slides FRB1IO02 [7.447 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRB1IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB2IO03 GEM*STAR Accelerator-Driven Subcritical System for Improved Safety, Waste Management, and Plutonium Disposition ion, neutron, target, simulation 1300
 
  • M.A. Cummings, R.J. Abrams, R.P. Johnson, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  Operation of high-power SRF particle accelerators at two US national laboratories allows us to consider a less-expensive nuclear reactor that operates without the need for a critical core, fuel enrichment, or reprocessing. A multipurpose reactor design that takes advantage of this new accelerator capability includes an internal spallation neutron target and high-temperature molten-salt fuel with continuous purging of volatile radioactive fission products. The reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors like those at Fukushima. We describe GEMSTAR , a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. A first application is to burn 34 tonnes of excess weapons grade plutonium as an important step in nuclear disarmament under the 2000 Plutonium Management and Disposition Agreement **. The process heat generated by this W-Pu can be used for the Fischer-Tropsch conversion of natural gas and renewable carbon into 42 billion gallons of low-CO2-footprint, drop-in, synthetic diesel fuel for the DOD.  
slides icon Slides FRB2IO03 [8.681 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRB2IO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)