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Abstract
Real-time beam modeling has been used in accelerator

diagnostics for several decades. Along the way, the theory
for matrix calculations of linear forces has matured, allowing
for fast calculations of a beam’s momentum and position
distributions.
This formalism becomes complicated and ultimately

breaks down with high-order beam elements like sextupoles.
Such elements can be accurately modeled with a Lie-algebra
approach, but these techniques are generally implemented
in slower, offline multiparticle tracking software.
Here, we demonstrate an adaptation of the conventional

Lie techniques for rapid first-order tracking of position,
which is accomplished by treating a bunch’s particle count
as an invariant.

METHOD
In a previous paper, we outlined a framework for sym-

plectic envelope-based tracking of non-linear forces using a
Lie-algebra approach [1]. Here, we benchmark this method
against an in-house multiparticle algorithm and a commer-
cial multiparticle code (Tracewin [2]).
The formal conventions of the previous work have been

retained and are briefly outlined here. Firstly, the Hamilto-
nian’s position and momentum components are treated as a
single phase-space vector:

~v = (q1,q2, . . . qn ,p1,p2 . . . pn )T (1)

and thus

d
dt
~v ≡

(
0 I
−I 0

)
· ∂~vH (2)

where each I is an n × n identity matrix and ∂~v is the partial
derivative with respect to each component of ~v. For the solu-
tion of linear forces, this equation reduces to the symplectic
transport matrices. For the non-linear forces of sextupoles
or higher-order magnets, the Hamiltonian from Eq. (2) can
be incorporated into a Lie algebra [3]:

~vt = e−t :H:~vi (3)

Using nonrelativistic phase-space for the transverse compo-
nents of a beam (where the time interval can substituted for
a constant element length: ∆t → L) the exponential Taylor
series takes form composed of recursive Poisson brackets:
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~vL = ~vi + [−LH ,~vi] +
1
2!
[−LH , [−LH ,~vi]] + . . . (4)

Next, we can identify particle count as an invariant

N =
∫
R2n

ρ~vd~v (5)

which also remains fixedwhen splitting ν into its constituents

N =
∫
Rn

ρ~qdq1dq2 . . . dqn

=

∫
Rn

ρ~pdp1dp2 . . . dpn
(6)

where ρ~q and ρ~p are the respective position- andmomentum-
density components of phase space. Here, we are assuming
that our output vector ~vt can be decoupled so that ~qt = f (~qi )
and ~pt = f (~pi ), which will be addressed below.
To proceed, we can make use of Eq. 6 with the determi-

nant of either component’s Jacobian, which, using Eq. 3 for
position in 1D, reduces to

|JxL | =
dxL

dxi
(7)

where qi → xi . This in turn yields

ρx,L =
ρx, i

|JxL |
(8)

It is critical to note that |JxL | needs an approximation for
p in order to use Eq. 8—otherwise solutions for decoupled
ρx and ρp in Eq. 6 cannot be assumed to exist. To achieve
this, our envelope tests incorporated a Taylor approximation
based on a trivial solution of the Courant–Snyder emittance
equation:

pi ≈ −
xα
β
−
σx

β
+

x2

2σx β
+

x4

8βσ3
x

+ ... (9)

with an RMS profile width of σx =
√
ε β where ε is emit-

tance. This approximation is only valid for p ≈ 0. A similar
approximation can be made for x ≈ 0 to find |Jp |.
Flat initial proton distributions and exaggerated magnet

lengths (∼10 m) were used first to produce distinct profile
shapes for easy comparison. Gaussian initial distributions
were then tested for a more physical result. Tracewin sim-
ulations were initialized with energies of 750 MeV, null
current (to neglect space-charge effects), and particle counts
of ∼300,000. To more easily match our field gradients with
those of Tracewin, the multipole Hamiltonians used in Eq. 3
were simplified for 1D tracking as follows:
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H =
1
n

kn xn +
p2

2m
(10)

where n = 3, 4, 5 for sextupolar, octupolar, and decapolar
forces, respectively.1

RESULTS
Figures 1 and 2 show transverse profiles of a uniform pro-

ton bunch passing through octupolar and decapolar elements,
respectively. In both cases, total counts are normalized to
median bins. In Fig. 3, Gaussian initial distributions passing

Figure 1: Uniform proton bunch profiles before and af-
ter passing through long octupoles. Shown are Tracewin,
in-house multiparticle, and in-house envelope results for
κ = 0.18 Wb−1.

through long decapoles are shown (normalized to maximum-
count bins).
In all cases, α and β values were initially set to those

reported by Tracewin. However, making fine corrections to
these values proved useful in matching the envelope peak
position and curvature to those of the multiparticle results.
This dependence may have some utility in making high-
precision corrections to Twiss parameters (e.g. populating
an envelope every 5000 turns for a short multiparticle-based
recalibration).
It should also be noted that for Fig. 1, a narrowed σx

in the initial distribution of the multipole was required to
prevent high ejection rates (which in this case did not affect
the profile shape).
1 Specific gradient strengths are reported here using Wille’s defini-
tion [4], which allows for a cross-order normalization: kn ≡

( δ
δx )n+1 B [T m− (n−1)], with field strengths normalized as κ ≈
e
p
|kn /T |

n

1/n
[Wb−1]. Thus, for p = 750 [MeV

c ] and a quadupole of
B = 2.5 T m−1, κ ≈ 1 [Wb−1].

Figure 2: Uniform bunches passing through long decapoles.
The inset highlights the strongly matched curvature around
zero for the envelope and Tracewin results. κ = 0.40Wb−1.

Figure 3: Gaussian bunches passing through long decapoles.
A reduced magnet strength is used here to prevent higher
losses owing to the Gaussian shape. κ = 0.74 Wb−1.

Although Eq. 7 is explicitly symplectic, the in-house mul-
tiparticle results depend on the exponential Taylor series
underlying Eq. 4. Because of this, the multiparticle results
deviate from phase-volume preservation depending on the
order of approximation. Thus, it was necessary to ensuring
that the determinant of each Jacobian was approximately 1,
that is:
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|J~vL | =
dxL

dxi

dpL

dpi
−

dxL

dpi

dpL

dxi
≈ 1 (11)

in which all terms are nonzero, since any non-linear mul-
tipole Hamiltomian produces xL = f (xi ,pi ) and pL =

g(xi ,pi ). For these tests, we used a cutoff of |J~vL | = 1±10−5
for x ≈ ±2σx .
To briefly address timing: since the envelope trials are

independent of particle count, this method has an implicit
speedup factor proportional to the N at which the shape of
the multiparticle trial converges (usually forming accurate
peaks near 104, with all features clearly defined around 106).
From rudimentary timing trials, this corresponds to speedup
factors of 3,30, and 85, for N values of 105,106, and 107,
respectively.

CONCLUSIONS
This method provides fast estimations of non-linear beam-

line forces of any order. As shown, its utility may be limited
to use in linear-based codes as a periodic correction tool,
albeit one of minimal computational cost compared with its
multiparticle counterparts.

To develop fully symplectic non-linear envelope tracking,
distributions in p and q can be carried explicitly through
Lie transforms without relying on Eqs. 8 or 9. This can be
accomplished using the substitution ρ~v → ~v in Eq. 3 and

propagating the coupled distribution (e.g. a bivariate normal
distribution).
Conversely, improvements on Eq. 9 may be possible by

finding solutions for xL = f (x0),pL = g(p0) that are not
dependent on Twiss parameters.
Preliminary studies on both of these techniques are un-

derway, and will also incorporate space-charge effects, a
formalized truncation method, and cluster computing opti-
mization.
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