WEPV —  Posters   (20-Oct-21   14:30—15:30)
Paper Title Page
WEPV001 Temperature Control for Beamline Precision Systems of Sirius/LNLS 607
 
  • J.L. Brito Neto, R.R. Geraldes, F.R. Lena, M.A.L. Moraes, A.C. Piccino Neto, M. Saveri Silva, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
Precision beamline systems, such as monochromators and mirrors, as well as sample stages and sample holders, may require fine thermal management to meet performance targets. Regarding the optical elements, the main aspects of interest include substrate integrity, in case of high power loads and densities; wavefront preservation, due to thermal distortions of the optical surfaces; and beam stability, related to thermal drift. Concerning the sample, nanometer positioning control, for example, may be affected by thermal drifts and the power management of some electrical elements. This work presents the temperature control architecture developed in house for precision elements at the first beamlines of Sirius, the 4th-generation light source at the Brazilian Synchrotron Light Laboratory (LNLS). Taking some optical components as case studies, the predictive thermal-model-based approach, the system identification techniques, the controller design workflow and the implementation in hardware are described, as well as the temperature stability results.
 
poster icon Poster WEPV001 [0.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV001  
About • Received ※ 15 October 2021       Accepted ※ 22 December 2021       Issue date ※ 21 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV002 Position Scanning Solutions at the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS 613
 
  • C.S.N.C. Bueno, L.G. Capovilla, R.R. Geraldes, L.C. Guedes, G.N. Kontogiorgos, L. Martins dos Santos, M.A.L. Moraes, G.B.Z.L. Moreno, A.C. Piccino Neto, J.R. Piton, H.C.N. Tolentino
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
TARUMÃ is the sub-microprobe station of the CARNAÚBA beamline at Sirius/LNLS*. Covering the range from 2.05 to 15keV, the probe consists of a fully-coherent monochromatic beam varying from 550 to 120nm with flux of up to 1e11ph/s/100mA after the achromatic focusing optics. Hence, positioning requirements span from nanometer-level errors for high-resolution experiments to fast continuous trajectories for high throughput, whereas a large flexibility is required for different sample setups and simultaneous multi-technique X-ray analyses, including tomography. To achieve this, the overall architecture of the station relies on a pragmatic sample positioning solution, with a rotation stage with a range of 220°, coarse stages for sub-micrometer resolution in a range of 20mm in XYZ and a fine piezo stage for nanometer resolution in a range of 0.3mm in XYZ. Typical scans consist of continuous raster 2D trajectories perpendicularly to the beam, over ranges that vary from tens to hundreds of micrometers, with acquisition times in range of milliseconds. Positioning is based on 4th order trajectories and feedforward, triggering includes the multiple detectors and data storage is addressed
* Geraldes, R.R., et al. ’Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS’ Proc. MEDSI20 (2020).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV002  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 05 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV003 The Dynamic Modeling and the Control Architecture of the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS 619
 
  • G.S. de Albuquerque, J.L. Brito Neto, R.R. Geraldes, M.A.L. Moraes, A.V. Perna, M. Saveri Silva, M.S. Souza
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The High-Dynamic Double-Crystal Monochromator (HD-DCM) has been developed since 2015 at Sirius/LNLS with an innovative high-bandwidth mechatronic architecture to reach the unprecedented target of 10 nrad RMS (1 Hz - 2.5 kHz) in crystals parallelism also during energy flyscans. Now, for beamlines requiring a smaller energy range (3.1 to 43 keV, as compared to 2.3 to 72 keV), there is the opportunity to adapt the existing design towards the so-called HD-DCM-Lite. The control architecture of the HD-DCM is kept, reaching a 20 kHz control rate in NI’s CompactRIO (cRIO). Yet, the smaller gap stroke between crystals allows for removing the long-stroke mechanism and reducing the main inertia by a factor 6, not only simplifying the dynamics of the system, but also enabling faster energy scans. With sinusoidal scans of hundreds of eV up to 20 Hz, this creates an unparalleled bridge between slow step-scan DCMs, and channel-cut quick-EXAFS monochromators. This work presents the dynamic error budgeting and scanning perspectives for the HD-DCM-Lite, including feedback controller design options via loop shaping, feedforward considerations, and leader-follower control strategies.
 
poster icon Poster WEPV003 [1.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV003  
About • Received ※ 13 October 2021       Accepted ※ 22 December 2021       Issue date ※ 26 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV005 Experiment Automation Using EPICS 625
 
  • D.D. Cosic, M. Vićentijević
    RBI, Zagreb, Croatia
 
  Beam time at accelerator facilities around the world is very expensive and scarce, prompting the need for experiments to be performed as efficiently as possible. Efficiency of an accelerator facility is measured as a ratio of experiment time to beam optimization time. At RBI we have four ion sources, two accelerators, ten experimental end stations. We can obtain around 50 different ion species, each requiring a different set of parameters for optimal operation. Automating repetitive procedures can increase efficiency of an experiment and beam setup time. Currently, operators manually fine tunes the parameters to optimize the beam current. This process can be very long and requires many iterations. Automatic optimization of parameters can save valuable accelerator time. Based on a successful implementation of EPICS, the system was expanded to automate reoccurring procedures. To achieve this, a PLC was integrated into EPICS and our acquisition system was modified to communicate with devices through EPICS. This allowed us to use tools available in EPICS to do beam optimization much faster than a human operator can, and therefore significantly increased the efficiency of our facility.  
poster icon Poster WEPV005 [0.468 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV005  
About • Received ※ 08 October 2021       Accepted ※ 21 November 2021       Issue date ※ 16 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV006 Automated Operation of ITER Using Behavior Tree Semantics 628
 
  • W. Van Herck, B. Bauvir, G. Ferro
    ITER Organization, St. Paul lez Durance, France
 
  The inherent complexity of the ITER machine and the diversity of the ways it will be operated in different phases, like commissioning or engineering operation, poses a great challenge for striking the right balance between operability, integration and automation. To facilitate the creation and execution of operational procedures in a robust and repeatable way, a software framework was developed: the Sequencer. As a supporting framework for tasks that are mostly goal-oriented, the Sequencer’s semantics are based on a behavior tree model that also supports concurrent flows of execution. In view of its intended use in very diverse situations, from small scale tests to full integrated operation, the architecture was designed to be composable and extensible from the start. User interactions with the Sequencer are fully decoupled and can be linked through dependency injection. The Sequencer library is currently feature-complete and comes with a command line interface for the encapsulation of procedures as system daemons or simple interactive use. It is highly maintainable due to its small and low complexity code base and dependencies to third party libraries are properly encapsulated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV006  
About • Received ※ 08 October 2021       Accepted ※ 21 November 2021       Issue date ※ 30 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV007 Machine Learning Projects at the 1.5-GeV Synchroton Light Source DELTA 631
 
  • D. Schirmer, A. Althaus, S. Hüser, S. Khan, T. Schüngel
    DELTA, Dortmund, Germany
 
  In recent years, several machine learning (ML) based projects have been developed to support automated monitoring and operation of the DELTA electron storage ring facility. This includes self-regulating global and local orbit correction of the stored electron beam, betatron tune feedback as well as electron transfer rate (injection) optimization. Furthermore, the implementation for a ML-based chromaticity control is currently prepared. Some of these processes were initially simulated and then successfully transferred to real machine operation. This report provides an overview of the current status of these projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV007  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 02 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV008 Online Automatic Optimization of the Elettra Synchrotron 636
 
  • G. Gaio, S. Krecic, F. Tripaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Online automatic optimization is a common practice in particle accelerators. Beside the tryouts based on Machine Learning, which are effective especially on non-linear systems and images but are very complex to tune and manage, one of the most simple and robust algorithms, the simplex Nelder Mead, is extensively used at Elettra to automatically optimize the synchrotron parameters. It is currently applied to optimize the efficiency of the booster injector by tuning the pre-injector energy, the trajectory and optics of the transfer lines, and the injection system of the storage ring. It has also been applied to maximize the intensity of the photon beam on a beamline by changing the electron beam position and angle inside the undulator. The optimization algorithm has been embedded in a TANGO device that also implements generic and configurable multi-input multi-output feedback systems. This optimization tool is usually included in a high level automation framework based on behavior trees in charge of the whole process of machine preparation for the experiments.  
poster icon Poster WEPV008 [1.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV008  
About • Received ※ 08 October 2021       Accepted ※ 26 January 2022       Issue date ※ 25 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV010 R&D of the KEK Linac Accelerator Tuning Using Machine Learning 640
 
  • A. Hisano, M. Iwasaki
    OCU, Osaka, Japan
  • H. Nagahara, Y. Nakashima, N. Takemura
    Osaka University, Institute for Datability Science, Oasaka, Japan
  • T. Nakano
    RCNP, Osaka, Japan
  • I. Satake, M. Satoh
    KEK, Ibaraki, Japan
 
  We have developed a machine-learning-based operation tuning scheme for the KEK e/e+ injector linac (Linac), to improve the injection efficiency. The tuning scheme is based on the various accelerator operation data (control parameters, monitoring data and environmental data) of Linac. For the studies, we use the accumulated Linac operation data from 2018 to 2021. To solve the problems on the accelerator tuning of, 1. A lot of parameters (~1000) should be tuned, and these parameters are intricately correlated with each other; and 2. Continuous environmental change, due to temperature change, ground motion, tidal force, etc., affects to the operation tuning; We have developed, 1. Visualization of the accelerator parameters (~1000) trend/correlation distribution based on the dimensionality reduction using Variational Autoencoder (VAE), to see the long-term correlation between the accelerator operation parameters and the environmental data, and 2. Accelerator tuning method using the deep neural network, which is continuously updated with the short-term accelerator data to adapt the environment changes. In this presentation, we report the current status of the R&D.  
poster icon Poster WEPV010 [1.997 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV010  
About • Received ※ 10 October 2021       Revised ※ 19 October 2021       Accepted ※ 21 November 2021       Issue date ※ 11 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV011 Research on Correction of Beam Beta Function of HLS-II Storage Ring Based on Deep Learning 645
 
  • Y.B. Yu, C. Li, W. Li, G. Liu, W. Xu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The beam stability of the storage ring determines the light quality of synchrotron radiation. The beam stability of the storage ring will be affected by many factors ’such as magnetic field error, installation error, foundation vibration, temperature variation, etc., so it is inevitable to correct the beam optical parameters to improve the beam stability. In this paper, the deep learning technology is used to establish the HLS-II storage ring beam stability model, and the beam optical parameters can be corrected based on the model. The simulation results show that this method realizes the simulation correction of the Beta function of the HLS-II storage ring, and the correction accuracy precision meets the design requirements.  
poster icon Poster WEPV011 [2.142 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV011  
About • Received ※ 09 October 2021       Revised ※ 15 November 2021       Accepted ※ 17 November 2021       Issue date ※ 21 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV012 Beam Fast Recovery Study and Application for CAFe 648
 
  • J.S. Li, Y.X. Chen, J. Wang, F. Yang, H. Zheng
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Based on the MASAR (MAchine Snapshot, Archiving, and Retrieve) system, a beam fast recovery system was designed and tested in CAFe (Chinese ADS Front-end Demo Superconducting Linac) at IMP/CAS for high cur-rent CW (Continuous Wave) beam. The proton beam was accelerated to about 20 MeV with 23 SC (Superconduct-ing) cavities, and the maximum current reaches about 10 mA. The fast-recovery system plays a major role in the 100-hours-100-kW long-term test, during which the aver-age time of the beam recovery is 7 second, achieving the availability higher than 90%. The system verifies the possibility for high current beam fast recovery in CiADS (China initiative Accelerator Driven sub-critical System).  
poster icon Poster WEPV012 [0.469 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV012  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 02 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV013 Design of Magnet Measurement System Based on Multi-Hall Sensor 653
 
  • B.J. Wang, Y.H. Guo, R. Wang, N. Xie
    IMP/CAS, Lanzhou, People’s Republic of China
 
  High-precision magnetic field measurement and control technique significantly guarantees the accurate realization of the magnetic confinement of accelerators. Using real-time magnetic field intensity as the feedback to adjust the magnetic field current input can be a promising strategy. However, the measurement accuracy of the Hall-sensor is hard to meet feedback requirements because of multiple affection from external factors. Meanwhile, the NMR(Nuclear Magnetic Resonance sensor), which can provide high-precision magnetic field measurement, can hardly meet the requirements against the real-time control due to its strict requirements on the uniformity of the measured magnetic field, as well as its low data acquisition speed. Therefore, a magnetic field measurement system based on multi-Hall sensors is designed to solve this problem. Four Hall-sensors are used to measure the target magnetic field in this system. An Adaptive fusion algorithm is used to fused collected values to obtain the best estimate of the magnetic field intensity. This system effectively improves the accuracy of magnetic field measurement and ensures the instantaneity of the measurement.  
poster icon Poster WEPV013 [0.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV013  
About • Received ※ 09 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 06 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV015 Development of the RF Phase Scan Application for the Beam Energy Measurement at KOMAC 656
 
  • S.Y. Cho, J.J. Dang, J.H. Kim, Y.G. Song
    KOMAC, KAERI, Gyeongju, Republic of Korea
 
  The Korea Multi-purpose Accelerator Complex (KOMAC) proton accelerator consists of 11 Drift Tube Linac (DTL) tanks, and each tank’s RF phase setting must be matched to increase synchronous acceleration of continuous tanks. A series of processes operate on the basis of JAVA and MatLAB languages, and the phase scanning program and the analytical program are classified and used independently. To integrate the two programs, the new integrated program of the RF scan application is developed based on python and epics scan module for the stability with some upgrade functions.  
poster icon Poster WEPV015 [1.051 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV015  
About • Received ※ 08 October 2021       Revised ※ 19 October 2021       Accepted ※ 21 November 2021       Issue date ※ 16 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV016 The Automatic LHC Collimator Beam-Based Alignment Software Package 659
 
  • G. Azzopardi, B. Salvachua
    CERN, Geneva, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The Large Hadron Collider (LHC) at CERN makes use of a complex collimation system to protect its sensitive equipment from unavoidable beam losses. The collimators are positioned around the beam respecting a strict transverse hierarchy. The position of each collimator is determined following a beam-based alignment technique which determines the required jaw settings for optimum performance. During the LHC Run 2 (2015-2018), a new automatic alignment software package was developed and used for collimator alignments throughout 2018*. This paper discusses the usability and flexibility of this new package describing the implementation in detail, as well as the latest improvements and features in preparation for Run 3 starting in 2022. The automation has already successfully decreased the alignment time by 70% in 2018** and this paper explores how to further exploit this software package. Its implementation provides a solid foundation to automatically align any new collimation configurations in the future, as well as allows for further analysis and upgrade of its individual modules.
*G.Azzopardi, et al"Software Architecture for Automatic LHC Collimator Alignment using ML",ICALEPCS19.
**G.Azzopardi, et al"Operational Results on the Fully-Automatic LHC Collimator Alignment",PRAB19.
 
poster icon Poster WEPV016 [0.443 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV016  
About • Received ※ 07 October 2021       Revised ※ 22 October 2021       Accepted ※ 22 December 2021       Issue date ※ 26 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV018 The Linac4 Source Autopilot 665
 
  • M. Peryt, M. Hrabia, D. Noll, R. Scrivens
    CERN, Geneva, Switzerland
 
  The Linac4 source is a 2MHz, RF driven, H ion source, using caesium injection to enhance H production and lower the electron to H ratio. The source operates with 800µs long pulses at 1.2 second intervals. The stability of the beam intensity from the source requires adjustment of parameters like RF power used for plasma heating. The Linac4 Source Autopilot improves the stability and uptime of the source, by using high-level automation to monitor and control Device parameters of the source, in a time range of minutes to days. This paper describes the Autopilot framework, which incorporates standard CERN accelerator Controls infrastructure, and enables users to add domain specific code for their needs. User code typically runs continuously, adapting Device settings based on acquisitions. Typical use cases are slow feedback systems and procedure automation (e.g. resetting equipment). The novelty of the Autopilot is the successful integration of the Controls software based predominantly on Java technologies, with domain specific user code written in Python. This allows users to leverage a robust Controls infrastructure, with minimal effort, using the agility of the Python ecosystem.  
poster icon Poster WEPV018 [4.371 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV018  
About • Received ※ 10 October 2021       Revised ※ 19 October 2021       Accepted ※ 22 December 2021       Issue date ※ 31 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV019 Renovation of the Beam-Based Feedback Controller in the LHC 671
 
  • L. Grech, D. Alves, A. Calia, M. Hostettler, S. Jackson, J. Wenninger
    CERN, Meyrin, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  This work presents an extensive overview of the design choices and implementation of the Beam-Based Feedback System (BBFS) used in operation until the LHC Run 2. The main limitations of the BBFS are listed and a new design called BFCLHC, which uses the CERN Front-End Software Architecture (FESA), framework is proposed. The main implementation details and new features which improve upon the usability of the new design are then emphasised. Finally, a hardware agnostic testing framework developed by the LHC operations section is introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV019  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 12 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV020 Learning to Lase: Machine Learning Prediction of FEL Beam Properties 677
 
  • A.E. Pollard, D.J. Dunning
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Maheshwari
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Accurate prediction of longitudinal phase space and other properties of the electron beam are computationally expensive. In addition, some diagnostics are destructive in nature and/or cannot be readily accessed. Machine learning based virtual diagnostics can allow for the real-time generation of longitudinal phase space and other graphs, allowing for rapid parameter searches, and enabling operators to predict otherwise unavailable beam properties. We present a machine learning model for predicting a range of diagnostic screens along the accelerator beamline of a free-electron laser facility, conditional on linac and other parameters. Our model is a combination of a conditional variational autoencoder and a generative adversarial network, which generates high fidelity images that accurately match simulation data. Work to date is based on start-to-end simulation data, as a prototype for experimental applications.  
poster icon Poster WEPV020 [1.330 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV020  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 28 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV021 Machine Learning for RF Breakdown Detection at CLARA 681
 
  • A.E. Pollard, D.J. Dunning, A.J. Gilfellon
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Maximising the accelerating gradient of RF structures is fundamental to improving accelerator facility performance and cost-effectiveness. Structures must be subjected to a conditioning process before operational use, in which the gradient is gradually increased up to the operating value. A limiting effect during this process is breakdown or vacuum arcing, which can cause damage that limits the ultimate operating gradient. Techniques to efficiently condition the cavities while minimising the number of breakdowns are therefore important. In this paper, machine learning techniques are applied to detect breakdown events in RF pulse traces by approaching the problem as anomaly detection, using a variational autoencoder. This process detects deviations from normal operation and classifies them with near perfect accuracy. Offline data from various sources has been used to develop the techniques, which we aim to test at the CLARA facility at Daresbury Laboratory. These techniques could then be applied generally.  
poster icon Poster WEPV021 [1.565 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV021  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 24 November 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV022 Sample Alignment in Neutron Scattering Experiments Using Deep Neural Network 686
 
  • J.P. Edelen, K. Bruhwiler, A. Diawpresenter, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • S. Calder
    ORNL RAD, Oak Ridge, Tennessee, USA
  • C.M. Hoffmann
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: DOE Office of Science Office of Basic Energy Science SBIR award number DE-SC0021555
Access to neutron scattering centers, such as Oak Ridge National Laboratory (ORNL) and the NIST Center for Neutron Research, has provided beam energies to investigating a wide variety of applications such as particle physics, material science, and biology. In these experiments, the quality of collected data is very sensitive to sample and beam alignment, and stabilization of the experimental environment, requiring human intervention to tune the beam. While this procedure works, it is inefficient and time-consuming. In the work we present progress towards using machine learning to automate the alignment of a beamline in neutron scattering experiments. Our algorithm uses convolutional neural network to both learn a surrogate of the image data of the sample and to predict the sample contour using a u-net. We tested our algorithm on neutron camera images from the H2-BA powder diffractometer and the Topaz single crystal diffractometer beamlines of ORNL.
 
poster icon Poster WEPV022 [4.472 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV022  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 December 2021       Issue date ※ 06 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV023 Development of a Smart Alarm System for the CEBAF Injector 691
 
  • D.T. Abell, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
  • B.G. Freeman, R. Kazimi, D.G. Moser, C. Tennant
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0019682.
RadiaSoft and Jefferson Laboratory are working together to develop a machine-learning-based smart alarm system for the CEBAF injector. Because of the injector’s large number of parameters and possible fault scenarios, it is highly desirable to have an autonomous alarm system that can quickly identify and diagnose unusual machine states. We present our work on artificial neural networks designed to identify such undesirable machine states. In particular, we test both auto-encoders and inverse models as possible tools for differentiating between normal and abnormal states. These models are being developed using both supervised and unsupervised learning techniques, and are being trained using CEBAF injector data collected during dedicated machine studies as well as during regular operations. Lastly, we discuss tradeoffs between the two types of models.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV023  
About • Received ※ 10 October 2021       Accepted ※ 19 January 2022       Issue date ※ 14 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV024 X-Ray Beamline Control with Machine Learning and an Online Model 695
 
  • B. Nash, D.T. Abell, D.L. Bruhwiler, E.G. Carlin, J.P. Edelen, M.V. Keilman, P. Moeller, R. Nagler, I.V. Pogorelov, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Du, A. Giles, J. Lynch, J. Maldonado, M.S. Rakitin, A. Walter
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-SC0020593.
We present recent developments on control of x-ray beamlines for synchrotron light sources. Effective models of the x-ray transport are updated based on diagnostics data, and take the form of simplified physics models as well as learned models from scanning over mirror and slit configurations. We are developing this approach to beamline control in collaboration with several beamlines at the NSLS-II. By connecting our online models to the Blue-Sky framework, we enable a convenient interface between the operating machine and the model that may be applied to beamlines at multiple facilities involved in this collaborative software development.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV024  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 17 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV025 Initial Studies of Cavity Fault Prediction at Jefferson Laboratory 700
 
  • L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D.L. Turner
    JLab, Newport News, Virginia, USA
  • K.M. Iftekharuddin, M. Rahman
    ODU, Norfolk, Virginia, USA
 
  Funding: This work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177.
The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered from over 5,000 saved fault events. The data was used to train a binary classifier. The results gave key insights into the behavior of several fault types and provided motivation to investigate whether data prior to a failure event could also predict the type of fault. We discuss our method using a sliding window approach and report on initial results. Recent modifications to the low-level RF control system will provide access to streaming signals and we outline a path forward for leveraging deep learning on streaming data
 
poster icon Poster WEPV025 [1.111 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV025  
About • Received ※ 08 October 2021       Revised ※ 19 October 2021       Accepted ※ 11 February 2022       Issue date ※ 05 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV026 Multi-Channel Heaters Driver for Sirius Beamline’s Optical Devices 705
 
  • M.M. Donatti, D.H.C. Araujo, F.H. Cardosopresenter, G.B.Z.L. Moreno, L. Sanfelici, G.T. Semissatto
    LNLS, Campinas, Brazil
 
  Thermal management of optomechanical devices, such as mirrors and monochromators, is one of the main bottlenecks in the overall performance of many X-Rays beamlines, particularly for Sirius: the new 4th generation Brazilian synchrotron light source. Due to high intensity photon beams some optical devices need to be cryogenically cooled and a closed-loop temperature control must be implemented to reduce mechanical distortions and instabilities. This work aims to describe the hardware design of a multi-channel driver for vacuum-ready ohmic heaters used in critical optical elements. The device receives PWM signals and can control up to 8 heaters individually. Interlocks and failure management can be implemented using digital signals input/outputs. The driver is equipped with a software programmable current limiter to prevent load overheating and it has voltage/current diagnostics monitored via EPICS or an embedded HTTP server. Enclosed in a 1U rack mount case, the driver can deliver up to 2A per channel in 12V and 24V output voltage versions. Performance measurements will be presented to evaluate functionalities, noise, linearity and bandwidth response.  
poster icon Poster WEPV026 [2.174 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV026  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 06 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV027 Expandable and Modular Monitoring and Actuation System for Engineering Cabinets at Sirius Light Source 710
 
  • P.H. Nallin, J.G.R.S. Franco, R.W. Pollipresenter
    LNLS, Campinas, Brazil
  • G.F. Freitas
    CNPEM, Campinas, SP, Brazil
 
  Having multipurpose hardware architectures for controls and monitoring systems has become a need nowadays. When it comes to modular and easy expandable devices, it brings together a system which is easy to maintain and can reach many applications. Concerning Sirius accelerators, which is a 4th generation light source, monitoring environment variables becomes crucial when it comes to accelerator stability and reliability. Several cabinets take part of engineering infrastructure and monitoring and acting over their environment such as internal temperature, pressure and fan status, increases overall system reliability. This paper presents a non-expensive hardware topology to deal with multiple sensors and actuators mainly designed to monitor cabinets and prevent beam quality loss due to equipment faults.  
poster icon Poster WEPV027 [0.830 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV027  
About • Received ※ 01 October 2021       Revised ※ 09 November 2021       Accepted ※ 21 November 2021       Issue date ※ 28 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV028 CompactRIO Custom Module Design for the Beamline’s Control System at Sirius 715
 
  • L.S. Perissinotto, F.H. Cardoso, M.M. Donatti
    LNLS, Campinas, Brazil
 
  The CompactRIO (cRIO) platform is the standard hardware choice for data acquisition, controls and synchronization tasks at Sirius beamlines. The cRIO controllers are equipped with a processor running a Real-Time Linux and contains an embedded FPGA, that could be programmed using Labview. The platform supports industrial I/O modules for a large variety of signals, sensors, and interfaces. Even with many commercial modules available, complex synchrotron radiation experiments demands customized signal acquisition hardware to achieve proper measurements and control system’s integration. This work aims to describe hardware and software aspects of the first custom 8-channel differential digital I/O module (compatible with RS485/RS422) developed for the Sirius beamlines. The module is compliant with cRIO specification and can perform differential communication with maximum 20 MHz update rate. The features, architecture and its benchmark tests will be presented. This project is part of an effort to expand the use of the cRIO platform in scientific experiments at Sirius and brings the opportunity to increase the expertise to develop custom hardware solutions to cover future applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV028  
About • Received ※ 09 October 2021       Revised ※ 21 October 2021       Accepted ※ 27 February 2022       Issue date ※ 01 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV030
Testing of the RTM Carrier Boards for the ESS Accelerator  
 
  • J. Szewiński, P.R. Bartoszek, K. Chmielewski, K. Kostrzewa, T. Kowalski, P. Markowski, D. Rybka, M. Sitek, Z. Wojciechowski
    NCBJ, Świerk/Otwock, Poland
 
  As a part of Polish in-kind contribution to the European Spallation Source (ESS), National Centre for Nuclear Research has developed low cost AMC board, which is used in the MTCA based ESS LLRF system to support RTM units in the crate. Board due to its primary function has been called ’RTM Carrier’, which may be confusing, because it is an AMC. The low cost board, that by concept shall be simple, without own functionality except providing PCIe access from MTCA backplane to the RTM device, has required significant amount of work to create complete firmware and software to cover all board functionality, which was needed to perform factory acceptance tests (FAT) of the described boards. This contribution will describe structure of the FPGA firmware and software used for the RTM Carrier acceptance testing, including techniques used for testing individual functions and features of the board.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV031 Status of the uTCA Digital LLRF design for SARAF Phase II 720
 
  • J. Fernández, P. Gil, J.G. Ramirez
    7S, Peligros (Granada), Spain
  • G. Desmarchelier
    CEA-DRF-IRFU, France
  • G. Ferrand, F. Gohier, N. Pichoff
    CEA-IRFU, Gif-sur-Yvette, France
 
  One of the crucial control systems of any particle ac-celerator is the Low-Level Radio Frequency (LLRF). The purpose of a LLRF is to control the amplitude and phase of the field inside the accelerating cavity. The LLRF is a subsystem of the CEA (Commissariat à l’Energie Atomique) control domain for the SARAF-LINAC (Soreq Applied Research Accelerator Facility ’ Linear Accelera-tor) instrumentation and Seven Solutions has designed, developed, manufactured, and tested the system based on CEA technical specifications. The final version of this digital LLRF will be installed in the SARAF accelerator in Israel at the end of 2021. The architecture, design, and development as well as the performance of the LLRF system will be presented in this paper. The benefits of the proposed architecture and the first results will be shown.  
poster icon Poster WEPV031 [2.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV031  
About • Received ※ 08 October 2021       Revised ※ 19 October 2021       Accepted ※ 12 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV033 Architecture of a Multi-Channel Data Streaming Device with an FPGA as a Coprocessor 724
 
  • J.M. Nogiec, P. Thompsonpresenter
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The design of a data acquisition system often involves the integration of a Field Programmable Gate Array (FPGA) with analog front-end components to achieve precise timing and control. Reuse of these hardware systems can be difficult since they need to be tightly coupled to the communications interface and timing requirements of the specific ADC used. A hybrid design exploring the use of FPGA as a coprocessor to a traditional CPU in a dataflow architecture is presented. Reduction in the volume of data and gradual transitioning of data processing away from a hard real-time environment are both discussed. Chief design concerns, including data throughput and precise synchronization with external stimuli, are addressed. The discussion is illustrated by the implementation of a multi-channel digital integrator, a device based entirely on commercial off-the-shelf (COTS) equipment.
 
poster icon Poster WEPV033 [0.489 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV033  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 08 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV034 Equipment and Personal Protection Systems for the Sirius Beamlines 729
 
  • L.C. Arruda, G.T. Barreto, M.P. Calcanha, L.U. Camacho, H.F. Canova, F.H. Cardoso, J.V.B. Franca, G.L.M.P. Rodrigues
    LNLS, Campinas, Brazil
  • F.A. Bacchim Neto, F.N. Moura
    CNPEM, Campinas, SP, Brazil
 
  Funding: Work supported by the Brazilian Ministry of Science, Technology and Innovation
The beamlines and front ends at Sirius, the Brazilian 4th generation synchrotron light source, require monitoring and protection systems for personal and equipment safety in general, due to the high beam power dissipated along the beamline, vacuum safety, secure radiation levels, use of robots, special gases, cryogenic systems, and other highly sensitive and costly equipment throughout the facility. Two distinct programable logic controllers (PLC) were then deployed to create the Equipment Protection System (EPS) and the Personal Protection System (PPS). This work presents an overview of the EPS/PPS - requirements, architecture, design and deployment details, and commissioning results for the first set of beamlines.
 
poster icon Poster WEPV034 [1.082 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV034  
About • Received ※ 09 October 2021       Revised ※ 19 October 2021       Accepted ※ 21 November 2021       Issue date ※ 19 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV036 The LMJ Target Chamber Diagnostic Module 734
 
  • R. Clot
    CEA, LE BARP cedex, France
 
  The Laser MegaJoule (LMJ), the French 176-beam laser facility, is located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.4 MJ of energy on targets, for high energy density physics experiments, including fusion experiments. The first bundle of 8-beams was commissioned in October 2014. By the end of 2021, ten bundles of 8-beams are expected to be fully operational. Due to energy levels achieved, optical components located at the end of the bundles are highly subject to damage stresses. This is particularly the case with vacuum windows whose integrity is critical. To measure these damages, identify the growth laws, and prevent their degradation (through blockers), the Target Chamber Diagnostic Module (TCDM) was integrated into the LMJ installation in 2019. This diagnostic, which also measures the windows transmission rate, as well as the spatial energy distribution at the end of the bundles, has been designed to operate automatically at night, between two experiments. This presentation describes this 2 years feedback of TCDM and presents the areas for improvement which have been identified to optimize its efficiency and reduce its timeline.  
slides icon Slides WEPV036 [2.047 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV036  
About • Received ※ 08 October 2021       Accepted ※ 05 January 2022       Issue date ※ 25 January 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV037 Development of a Voltage Interlock System for Normal-Conducting Magnets in the Neutrino Experimental Facility at J-PARC 738
 
  • K. Nakayoshi, Y. Fujii, K. Sakashita
    KEK, Tsukuba, Japan
 
  We are upgrading a beamline of neutrino experimental facility at J-PARC to realize its 1.3MW operation. One of the upgrade items is to strengthen machine protection interlocks at the beamline. So far, we have developed an interlock system that monitors the output current of the power supplies for normal-conducting(NC) magnets at the primary beamline. On the other hand, we observed an event that a coil-short in one of bending magnets at a beam transport line at J-PARC (3-50BT) happened in 2019 and it caused a drift of beam orbit over the time. Our present interlock system can not detect a similar coil-short in the magnet while such change of the beam orbit may cause a serious trouble. One of possible way to detect such coil-short is to monitor a voltage of the magnet coil. Actually, a significant voltage drop between layers of the coil was observed for the 3-50BT magnet coil-short. Focusing on the fact, we are developing a system that constantly monitors the voltage value of the magnets at primary beamline and issues an interlock when there is a fluctuation exceeding a threshold value. We report the progress of development of the system.  
poster icon Poster WEPV037 [7.195 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV037  
About • Received ※ 27 October 2021       Revised ※ 11 November 2021       Accepted ※ 21 November 2021       Issue date ※ 12 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV038 Performance Verification of New Machine Protection System Prototype for RIKEN RI Beam Factory 742
 
  • M. Komiyama, M. Fujimaki, N. Fukunishi, K. Kumagai, A. Uchiyama
    RIKEN Nishina Center, Wako, Japan
  • M. Hamanaka, T. Nakamura
    SHI Accelerator Service Ltd., Tokyo, Japan
 
  We report on performance verification of a prototype of a new machine protection system for the RIKEN Radioactive Isotope Beam Factory (RIBF). This prototype was developed to update a beam interlock system (BIS) in operation since 2006. The new system, like the BIS, is configured using a programmable logic controller (PLC). We applied the prototype to a small part of RIBF and started its operation in Sept., 2020. It consists of two separate PLC stations, and there are 28 digital inputs and 23 analog inputs as interlock signals, and 5 digital outputs are used to stop a beam in total. The observed response time averaged 2 ms and 5.7 ms, respectively, within one station and with both stations. When deploying the prototype in the same scale as the BIS, which consists of 5 PLC stations with roughly 400 signals, the response time is estimated to be over 10 ms, which means that it is too long to protect the equipment when the intensity of the beam accelerated at RIBF becomes higher. Therefore, we are starting to redesign a system by adding a field-programmable gate array (FPGA) to shorten the response time significantly rather than repeating minor improvements to save a few milliseconds.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV038  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 24 January 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV039 Novel Personnel Safety System for HLS-II 746
 
  • Z.Y. Huang, C. Li, G. Liu, X.K. Sun, J.G. Wang, S. Xu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Supported by the National Natural Science Foundation of China (No.113751861)
The Hefei Light Source-II (HLS-II) is a vacuum ultraviolet synchrotron light source. The Personnel Safety System (PSS) is the crucial part to protect staff and users from radiation damages. In order to share access control information and improve the reliability for HLS-II, the novel PSS is designed based on Siemens redundant PLC under EPICS environment which is composed by the safety interlock system, access control system and the radiation monitoring system. This paper will demonstrate the architecture and the specific design of this novel PSS and shows the operation performance after it has been implemented for 2 years.
 
poster icon Poster WEPV039 [3.318 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV039  
About • Received ※ 30 September 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 02 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV040 Design of Machine Protection System for SXFEL-UF 750
 
  • C.L. Yu, J.G. Ding, H. Zhao
    SSRF, Shanghai, People’s Republic of China
 
  Shanghai Soft X-ray Free-Electron Laser (SXFEL) facility is divided into two phases: the SXFEL test facility (SXFEL-TF) and the SXFEL user facility (SXFEL-UF). SXFEL-TF has met all the design specifications and has been available in beam operating state. SXFEL-UF is currently under commissioning and is planned to generate 3 nm FEL radiation using a 1.5 GeV electron LINAC. To protect the critical equipment rapidly and effectively from unexpected damage, a reliable safety interlocking system needs to be designed. Machine Protection System (MPS) is designed by Programmable Logic Controller (PLC) and Experimental Physics and Industrial Control System (EPICS) which is based on a master-slave architecture. In order to meet different commissioning and operation requirements, the management and switching functions of eight operation modes are introduced in the MPS system. There are two FEL line in user facility named SXFEL beamline project (BSP) and undulator (UD) , and the corresponding design of MPS is completed. This paper focuses on the progress and challenges associated with the SXFEL-UF MPS.  
poster icon Poster WEPV040 [0.883 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV040  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 21 November 2021       Issue date ※ 07 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV041 Implementation of a VHDL Application for Interfacing Anybus CompactCom 755
 
  • S. Gabourin, A. Nordt, S. Pavinatopresenter
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS ERIC), based in Lund (Sweden), will be in a few years the most powerful neutron source in Europe with an average beam power of 5 MW. It will accelerate proton beam pulses to a Tungsten wheel to generate neutrons by the spallation effect. For such beam, the Machine Protection System (MPS) at ESS must be fast and reliable, and for this reason a Fast Beam Interlock System (FBIS) based on FPGAs is required. Some protection functions monitoring slow values (like temperature, mechanical movements, magnetic fields) need however less strict reaction times and are managed by PLCs. The communications protocol established between PLCs and FBIS is PROFINET fieldbus based. The Anybus CompactCom allows an host to have connectivity to industrial networks as PROFINET. In this context, FBIS represents the host and the application code to interface the AnyBus CompactCom has been fully developed in VHDL. This paper describes an open source implementation to interface a CompactCom M40 with an FPGA.  
poster icon Poster WEPV041 [0.967 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV041  
About • Received ※ 09 October 2021       Revised ※ 22 October 2021       Accepted ※ 14 January 2022       Issue date ※ 01 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV042 Applying Model Checking to Highly-Configurable Safety Critical Software: The SPS-PPS PLC Program 759
 
  • B. Fernández Adiego, E. Blanco Viñuela, F. Havart, T. Ladzinski, I.D. Lopez-Miguel, J-C. Tournier
    CERN, Geneva, Switzerland
 
  An important aspect of many particle accelerators is the constant evolution and frequent configuration changes that are needed to perform the experiments they are designed for. This often leads to the design of configurable software that can absorb these changes and perform the required control and protection actions. This design strategy minimizes the engineering and maintenance costs, but it makes the software verification activities more challenging since safety properties must be guaranteed for any of the possible configurations. Software model checking is a popular automated verification technique in many industries. This verification method explores all possible combinations of the system model to guarantee its compliance with certain properties or specification. This is a very appropriate technique for highly configurable software, since there is usually an enormous amount of combinations to be checked. This paper presents how PLCverif, a CERN model checking platform, has been applied to a highly configurable Programmable Logic Controller (PLC) program, the SPS Personnel Protection System (PPS). The benefits and challenges of this verification approach are also discussed.  
poster icon Poster WEPV042 [1.880 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV042  
About • Received ※ 07 October 2021       Accepted ※ 21 November 2021       Issue date ※ 25 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV043
Generic Software for CERN’s LIU Beam Loss Monitoring Systems from LINAC4 to SPS Injection  
 
  • D. Medina
    CERN, Geneva 23, Switzerland
 
  The real-time software for the Beam Loss Monitoring Systems (BLM) configures, instruments, optimizes and protects the machine in the framework of CERN’s LHC Injectors Upgrade (LIU). Initially designed to fulfil the needs of the new LINAC4 linear accelerator, the software has evolved during CERN’s LS2 to cover the additional requirements of the Proton Synchrotron Booster (PSB) and Proton Synchrotron (PS) accelerators, as well as all the interconnecting transfer lines up to the Super Proton Synchrotron (SPS), and the PS East Experiment Area. This paper outlines how the software has been designed to cover all these needs, while maintaining a homogenous software core. It will highlight the challenges in achieving this goal, as well as detailing how the special cases in the PS and TT10 transfer line were specifically addressed.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV044 Beam Profile Measurements as Part of the Safe and Efficient Operation of the New SPS Beam Dump System 764
 
  • A. Topaloudis, E. Bravin, S. Burger, S. Jackson, F.M. Velotti, E. Veyrunes
    CERN, Meyrin, Switzerland
 
  In the framework of the LHC Injectors Upgrade (LIU) project, the Super Proton Synchrotron (SPS) accelerator at CERN is undergoing a profound upgrade including a new high-energy beam dump. The new Target Internal Dump Vertical Graphite (TIDVG#5) is designed to withstand an average dumped beam power as high as 235 kW to cope with the increased intensity and brightness of the LIU beams whose energies in the SPS range from 14 to 450 GeV. Considering such highly demanding specifications, the constant monitoring of the device’s status and the characteristics of the beams that are dumped to it is of utmost importance to guarantee an efficient operation with little or no limitations. While the former is ensured with several internal temperature sensors, a Beam Observation system based on a scintillating screen and a digital camera is installed to extract the profile of the beam dumped in TIDVG#5 for post mortem analysis. This paper describes the overall system that uses the BTV images to contribute to the safe and efficient operation of the SPS Beam Dump System (SBDS) and hence the accelerator.  
poster icon Poster WEPV044 [0.723 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV044  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 22 December 2021       Issue date ※ 09 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV047 Supporting Flexible Runtime Control and Storage Ring Operation with the FAIR Settings Management System 768
 
  • R. Mueller, J. Fitzek, H.C. Hüther, H. Liebermann, D. Ondreka, A. Schaller, A. Walter
    GSI, Darmstadt, Germany
 
  The FAIR Settings Management system has now been used productively for the GSI accelerator facility operating synchrotrons, storage rings, and transfer lines. The system’s core is being developed in a collaboration with CERN, and is based on CERN’s LHC Software Architecture (LSA) framework. At GSI, 2018 was dedicated to integrating the Beam Scheduling System BSS. Major implementations for storage rings were performed in 2019, while 2020 the main focus was on optimizing the performance of the overall control system. Integrating with the BSS allows us to configure the beam execution directly from the settings management system. Defining signals and conditions enables us to control the runtime behavior of the machine. The storage ring mode supports flexible operation with features allowing to pause the machine and execute in-cycle modifications, using concepts like breakpoints, repetitions, skipping, and manipulation. After providing these major new features and their successful productive use, the focus was shifted on optimizing their performance. The performance was analyzed and improved based on real-word scenarios defined by operations and machine experts.  
poster icon Poster WEPV047 [0.692 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV047  
About • Received ※ 09 October 2021       Accepted ※ 23 November 2021       Issue date ※ 22 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV048 An Archiver Appliance Performance and Resources Consumption Study 774
 
  • R.N. Fernandes, S. Armanet, H. Kocevar, S. Regnell
    ESS, Lund, Sweden
 
  At the European Spallation Source (ESS), 1.6 million signals are expected to be generated by a (distributed) control layer composed of around 1500 EPICS IOCs. A substantial amount of these signals - i.e. PVs - will be stored by the Archiving Service, a service that is currently under development at the Integrated Control System (ICS) Division. From a technical point of view, the Archiving Service is implemented using a software application called the Archiver Appliance. This application, originally developed at SLAC, records PVs as a function of time and stores these in its persistent layer. A study based on multiple simulation scenarios that model ESS (future) modus operandi has been conducted by ICS to understand how the Archiver Appliance performs and consumes resources (e.g. RAM) under disparate workloads. This paper presents: 1) The simulation scenarios; 2) The tools used to collect and interpret the results; 3) The storage study; 4) The retrieval study; 5) The resources saturation study; 6) Conclusions based on the interpretation of the results.  
poster icon Poster WEPV048 [0.487 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV048  
About • Received ※ 10 October 2021       Accepted ※ 11 February 2022       Issue date ※ 12 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV049 Controls Data Archiving at the ISIS Neutron and Muon Source for In-Depth Analysis and ML Applications 780
 
  • I.D. Finch, G.D. Howells, A.A. Saoulis
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UKRI / STFC
The ISIS Neutron and Muon Source accelerators are currently operated using Vsystem control software. Archiving of controls data is necessary for immediate fault finding, to facilitate analysis of long-term trends, and to provide training datasets for machine learning applications. While Vsystem has built-in logging and data archiving tools, in recent years we have greatly expanded the range and quantity of data archived using an open-source software stack including MQTT as a messaging system, Telegraf as a metrics collection agent, and the Influx time-series database as a storage backend. Now that ISIS has begun the transition from Vsystem to EPICS this software stack will need to be replaced or adapted. To explore the practicality of adaptation, a new Telegraf plugin allowing direct collection of EPICS data has been developed. We describe the current Vsystem-based controls data archiving solution in use at ISIS, future plans for EPICS, and our plans for the transition while maintaining continuity of data.
 
poster icon Poster WEPV049 [0.845 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV049  
About • Received ※ 09 October 2021       Revised ※ 19 October 2021       Accepted ※ 22 December 2021       Issue date ※ 19 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV050
Containerised Control Systems Development at Isis and Potential Use in an Epics System  
 
  • G.D. Howells, I.D. Finch
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UKRI / STFC
Control system developers at the ISIS Neutron and Muon Source have been using Docker container technology as an efficient means to trial and develop interconnected software systems. We outline how the group has been able to use pre-existing container images in the traditional style for recording system metrics (e.g., TIG stack) and other telemetry. Furthermore, with the ISIS control system migrating from Vsystem to EPICS, we report how core components of these systems have been built and used within containers. We finally discuss whether such container technology could be used to implement the end goal of a full EPICS control system, or whether it is best suited to exploratory investigations.
 
poster icon Poster WEPV050 [1.402 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)