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Abstract
Maximising the accelerating gradient of RF structures is

fundamental to improving accelerator facility performance
and cost-effectiveness. Structures must be subjected to a
conditioning process before operational use, in which the
gradient is gradually increased up to the operating value.
A limiting effect during this process is breakdown or vac-
uum arcing, which can cause damage that limits the ultimate
operating gradient. Techniques to efficiently condition the
cavities while minimising the number of breakdowns are
therefore important. In this paper, machine learning tech-
niques are applied to detect breakdown events in RF pulse
traces by approaching the problem as anomaly detection,
using a variational autoencoder. This process detects devia-
tions from normal operation and classifies them with near
perfect accuracy. Offline data from various sources has been
used to develop the techniques, which we aim to test at the
CLARA facility at Daresbury Laboratory. These techniques
could then be applied generally.

INTRODUCTION
There are two main aims with this project. Firstly, we

aim to assemble a machine learning (ML) based system
that could be used to replace the current mask method of
radio frequency (RF) breakdown (BD) detection which is
standard in the automated code used in the RF conditioning
of accelerating cavities. Secondly, we aim to ensure that the
mid-process features of the same mechanism could be used
as inputs for an ML algorithm designed to predict whether
or not the next RF pulse would lead to a BD.

To this end, we constructed a 𝛽 convolutional variational
autoencoder (𝛽CVAE)[1] with RF conditioning data as in-
puts. After being trained as an anomaly detector this acted
as a live BD detector, in conjunction with a dense neural
network (NN), which would act with the capacity to replace
the current non-ML based BD detection system. In addition
to this, the 𝛽CVAE’s latent space could act as a viable in-
put for a long short-term memory (LSTM) recurrent neural
network (RNN) that could be used to predict BDs, based on
the methodology set out by Kates-Harbeck et al.[2] who had
success in predicting disruptive instabilities in controlled
fusion plasmas.

For this investigation, we used data from the CLARA
accelerator (Compact Linear Accelerator for Research and
Applications) based at Daresbury Laboratory. CLARA is a
dedicated accelerator test facility with the capacity to deliver
high quality electron beams for industry and research. In
addition to the CLARA data, a larger dataset was provided
∗ amelia.pollard@stfc.ac.uk

by the CLIC team at CERN covering a cavity test which
took place in CERN’s XBOX-2 test stand. The structure
tested in this dataset was a T24 high-gradient prototype X-
band cavity produced at the Paul Scherrer Institute; further
details of this design have been reported previously [3, 4].
The CLARA data was collected as part of the routine RF
breakdown detection system.

RELATED WORK
Solopova et al.’s [5] application of a decision tree model

to assign both a fault type and cavity-specific location to a
collected breakdown signal at CEBAF represents the first
foray into using machine learning to classify RF cavity faults.
This work was then continued in Tennant et al.[6] where the
authors applied a random forest model to the classification
of faults and cavity identity for a larger dataset of breakdown
events.

Obermair et al. [7] took the first step towards machine
learning based detection and prediction of breakdowns. The
authors separately applied deep learning on two available
data types (event and trend data) to predict breakdowns.
In so doing, they were able to predict breakdowns 20ms
in advance with good accuracy. In addition, they utilised
explainable AI on these models to elucidate the physics
of a breakdown. This pointed them towards an increased
pressure in the vacuum system before a breakdown, which
they indicated as an option for an improved interlocking
system. Their analysis of event data alone also reveals the
possibility to predict breakdowns with good accuracy, if
there has already been a breakdown in the previous minute,
i.e. prediction of follow-up breakdowns.

Previous work within our organisation also informed the
present studies. Another dataset from XBOX cavity test-
ing was analysed for missed breakdowns using principal
component analysis and neural networks [8]. Very high clas-
sification accuracy was reported, but there was suspected
duplication of traces in the dataset.

METHODOLOGY
CLARA

Here we use data gathered during the RF conditioning
of CLARA’s 10 Hz photoinjector (Gun-10), which includes
both the RF pulse traces themselves and other non-RF, such
as the temperature and pressure inside Gun-10. The RF trace
data was gathered before ML was taken into consideration
and was therefore not ideal for our purposes, but it was
deemed to be sufficient for progress to be made. The trace
data was only recorded when the RF breakdown detector was
activated and a BD identified, then the conditioning script
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Figure 1: A plot of the results of applying the t-SNE/DB-
SCAN method to label the CLARA Gun-10 data set. Each
cluster is given an index with its population displayed below,
i.e. the cluster in the top right corner of the plot has an index
of 6 and a population of 159. As examples of the principal
trace types, the large central cluster indexed as 1 represents
noise traces, cluster 4 contains only healthy traces, 8 break-
down traces, and 7 is composite (healthy/BD).

would record the pulse associated with the BD, as well as the
two previous and two subsequent pulses. Altogether, there
were 40 traces recorded per breakdown event (8 traces for
each of the 5 pulses). Specifically the traces were: klystron
(forward, reverse power, and phase), and cavity,(forward,
reverse power, and phase).

In order to provide the ground truth and label each
recorded trace as either, noise, healthy, BD or anomaly,
the traces were first grouped together by using sklearn’s
t-SNE[9] (t-distributed Stochastic Neighbour Embedding)
and DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) functions. The traces from each delivered
cluster were then over-plotted and inspected by eye with any
pure groups receiving the appropriate label and composite
clusters undergoing further t-SNE/DBSCAN analysis until
only pure groups remained. Figure 1 shows an example
of the clustering that was returned by the t-SNE/DBSCAN
method for this data set.

The next step was to construct the 𝛽CVAE at the core
of the BD detector and at the beginning of the planned BD
predictor. After much experimentation with spectrograms,
phase traces, and temperature and pressure data, it was found
that the most effective input for the 𝛽CVAE was a 2D array
comprised of the four normalised power traces, with dimen-
sions of 4 × 1017. The most optimal structure of the found
for 𝛽CVAE is displayed and described in Fig. 2.

The 𝛽CVAE was trained on 4659 healthy traces in order
to create the anomaly detector, which was then validated
using another 1164 healthy traces. For both training and
validation the Adam optimiser and categorical cross entropy
loss function were used. Testing the 𝛽CVAE involved expos-
ing the algorithm to 706 healthy and 706 BD traces (1412
traces in total) and subtracting the reconstructed traces from

the original traces to produce 1D reconstruction error traces.
These were then used as an input for a simple dense neu-
ral network classifier with one ReLU activated hidden layer
with the same dimensions as the input layer and a binary
(healthy or BD) softmax activated output layer. Again the
Adam optimiser and categorical cross entropy loss function
were used.

A confusion matrix was then constructed by comparing
the class assigned by the model to the ground truth in order
to check for the accuracy and recall of the BD row for the
system, as in Table 2. For this dataset, the key statistic was
the recall of the BD row, since the accelerator not reacting
to a false negative could be damaging to the accelerating
structure, whereas reacting to a false positive merely results
in a slight reduction in the time efficiency of the accelerator.
An accuracy of 96.9% and a BD row recall of 98.0% was
achieved using the methods outlined above. We also noted
that approximately half of the false negative traces were in
fact healthy or anomalous after manual inspection. This is
not surprising since the labelling process relied on unsuper-
vised ML processes and, had time allowed, all traces would
have been labelled individually by an RF expert.

Future work will include the integration of the ML BD
detector into the next version upgrade of the RF conditioning
code and the construction of the LSTM RNN for the pre-
dictive system. However, before this can be effective, more
appropriate data may need to be gathered from CLARA,
particularly more traces before a BD event and at a higher
RF repetition rate than 10 Hz. Since CLARA RF power
is pulsed if we were to follow the methodology set out in
Kates-Harbeck et al.[2] we can think of the noise between
pulses as missing data . In order to quantify the proportion
of data that is effectively missing, or pseudo-missing, we
can use the following relation,

𝑅DATA = 1 − 𝐷, (1)

where 𝑅DATA is the proportion of the data that is pseudo-
missing and 𝐷, the compliment of 𝑅DATA, is the dimension-
less duty cycle of the RF system, defined as,

𝐷 = PRR × 𝜏pulse, (2)

where PRR is the pulse repetition rate in Hz and 𝜏pulse
is the RF pulse length in seconds. For CLARA’s Gun-10
we have a PRR of 10 Hz and an operational pulse length of2.5 µs, which gives a duty cycle of 2.5 × 10−5, or 0.0025%
and consequently a proportion of pseudo-missing data of0.999975, or 99.997%. It seems reasonable to assume that
for any given system there may exist a “duty cycle threshold”
below which BD prediction using ML with RF trace data is
not practically possible and which may only be determined
experimentally.

CERN
The CERN XBOX data consisted of two primary data

types: event and trend. The trend data contained environ-
mental data concerning the test cavity (i.e. temperature,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV021

WEPV021C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

682 Feedback Control, Machine Tuning and Optimization



Figure 2: The final structure of the 𝛽CVAE for the CLARA dataset study. The encoding half of the 𝛽CVAE was constructed
by using 2D arrays consisting of the four power traces (4 × 1017) as inputs to the first 2D ReLU activated convolutional layer
with subsequent 2D max pooling layer, the arrays were then flattened and inputted into a 1 × 4 ReLU activated dense layer
before being passed into the 1 × 2 latent space. The decoder consisted of two dense ReLU activated layers of dimensions1 × 8 and 1 × 32, before a sigmoid activated output layer of 1 × 4068 (= 4 × 1017). The outputted 1D array was then reshaped
into a 4 × 1017 2D array in order to produce the reconstructed traces with the original input layer dimensions.

vacuum pressure) while the event data contained the signal
traces from a number of components of the RF system.

To keep consistency with the CLARA breakdown detector,
the trend data was discarded and only the RF traces were
used. These traces consisted of 16 channels, of which we
excluded 7, as follows. Two of the channels (‘DC UP’ and
‘DC DOWN’) corresponded to the Faraday cups upstream
and downstream of the RF cavity, and these were used for
automated labelling of the samples. A reading of less than−0.05 from either cup would mark that trace as a breakdown.
The remaining 5 excluded channels were removed as they
were either repeated signals (i.e. the ‘PSR log’ channel
repeated ‘PSR Amplitude’ channel, but with log scaling)
or essentially noise (such as the Beam Loss Monitor signal,
which was indistinguishable from noise).

Further filtering was applied to ensure the quality of the
data, and traces were removed wherein the mean and vari-
ance of the amplitude traces indicated that the RF cavity was
not active ( ̄𝑥×𝜎2(𝑥) < 1𝑒−4), and the signals were therefore
considered noise. This filtering and classification resulted
in 254,656 samples, of which 5,930 samples contained a
breakdown.

We then developed a beta variational autoencoder model,
as shown in Fig. 3, to reconstruct only healthy signals. The
network was trained using 90% of the healthy signals. The
Adam optimiser was used with a learning rate of 1𝑒−3, with
the error function defined in equation (3). The network was
trained to convergence, which took 27 epochs. For 𝛽 a value
of 5 was chosen by grid search.

𝐸(𝑥) = 𝛽𝐷𝑘𝑙(𝑁(0, 1)||𝑃(𝑥|𝜇, 𝜎)) + 𝑎𝑏𝑠(𝑥 − ̄𝑥) (3)

Note that 𝐷𝑘𝑙 represents the Kullback-Liebler diver-
gence[10].

Once sufficiently trained to reconstruct healthy signals,
we utilised this overfitting to detect breakdown events as
anomalies. That is to say, when the network fails to recon-
struct the signal well, we can be reasonably assured that
this represents a deviation from normal operation and thus a
breakdown event.

In order to classify the breakdown events, we began by
passing all breakdown events and an equal number of non-
breakdown events through the autoencoder, taking the recon-
struction error for each channel and compiling those values
into a vector. Applying a K-nearest neighbour algorithm
to the per-channel reconstruction error vector resulted in
mediocre performance, as shown in Table 1. As such, we
elected to implement a simple multi-layer neural network
to perform the classification, while also concatenating the
latent space representation of the example to the per-channel
reconstruction errors to form the input vector. This new
neural network was then trained to convergence in 20 epochs
using the Adam optimiser, with a learning rate of 1𝑒 − 2
and a binary cross-entropy loss function. Results from this
network are shown in Table 3.

Table 1: kNN Results on CERN XBOX Data

Positive Negative
True 89.6% 98.8%
False 10.4% 1.2%

Early work into prediction of breakdowns was undertaken
by replacing the classification network with an LSTM which
was trained on a label of time-until-breakdown. Unfortu-
nately, this achieved little success with our most effective
attempt achieving 73% accuracy at predicting breakdowns
within 30 second windows. We hypothesise this is due to
the sparse nature of the sampling of shots, and future work
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Figure 3: For the CERN XBOX data, three of the input channels were of a lower dimension, and each channel was processed
by a CNN with filters of size 1 × 5, with the resulting feature vectors flattened and concatenated before being passed to a
dense ReLu layer and encoded into the latent space. The decoder is constructed of a single dense ReLu layer with each
channel consisting of a linear dense layer.

will involve collecting a higher frequency sampling of shots
such that this prediction might be enabled.

RESULTS
As can clearly be seen, both networks produced strong

results very high recall and accuracy. In particular, the high
recall value is significant for such an unbalanced dataset. If
of a system of this type were to be deployed to an edge ML
system on an accelerator, a low false positive rate would be
extremely important for operator trust of the system.

Table 2: Results on CLARA Data

Positive Negative
True 95.8% 98.0%
False 4.2% 2.0%

Table 3: Results on CERN XBOX Data

Positive Negative
True 97.9% 99.6%
False 2.1% 0.4%

It is of note that approximately half of the false positives
in the CERN XBOX data are in fact true positives that were
mislabelled by the automated labelling, as verified by manual
inspection.

CONCLUSION
We find that the application of a variational autoencoder

as an anomaly detector is extremely effective as a break-
down detector for RF cavities. A significant benefit of this
approach is that it requires only healthy signals to train a
strong detector, in contrast to supervised approaches which
require careful balancing of positive and negative signals.
Obermair et al.[7] showed that environmental trend data
was sufficient to predict breakdowns with good accuracy
up to 20ms in advance. They also found that shot traces

are sufficient to predict breakdowns with good accuracy, if
and only if there has already been a breakdown in the last
minute. In agreement with their results, we find that the shot
traces from the cavity alone are not sufficient at this sam-
pling frequency to predict breakdowns ex nihilo. We plan
to collect additional data from CLARA with complete shot
capture. With this data, we hope to demonstrate breakdown
prediction using only per-shot phase and amplitude traces
and the anomaly detection method presented herein.
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