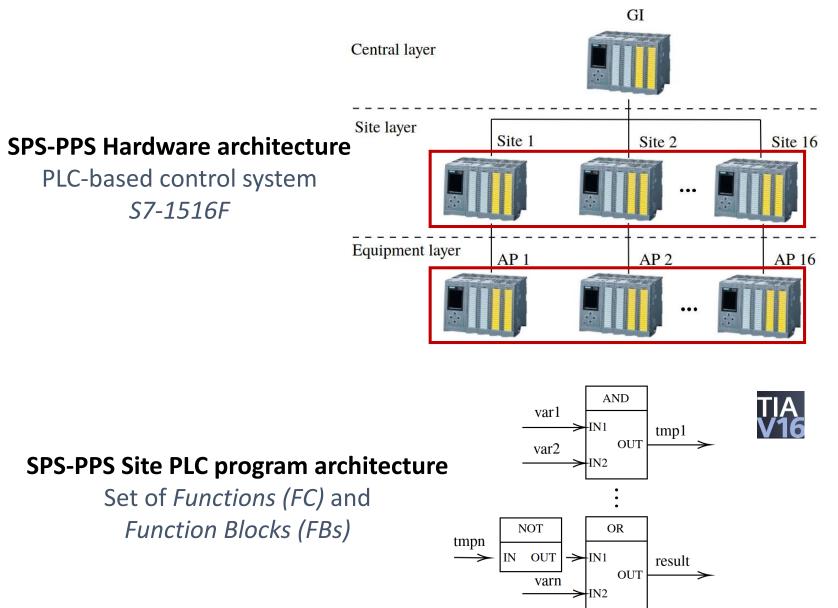


APPLYING MODEL CHECKING TO HIGHLY-CONFIGURABLE SAFETY CRITICAL SOFTWARE: THE SPS-PPS PLC PROGRAM


B. Fernández, I. D. Lopez-Miguel, J-C. Tournier, E. Blanco, T. Ladzinski, F. Havart, CERN, Geneva, Switzerland

PLCverif allows to apply model checking to PLC program and hides the complexity associated to formal methods

THE SPS PERSONNEL PROTECTION SYSTEM (PPS)

- Highly distributed and configurable system
- Site PLCs: common PLC program and different configurations per access zone

- TIA Portal programming environment
- Function Block Diagram (FBD)
 programming language
- Complex and large PLC logic
- Complex specifications

THE SITE SPS-PPS PLC PROGRAM AND SPECIFICATIONS

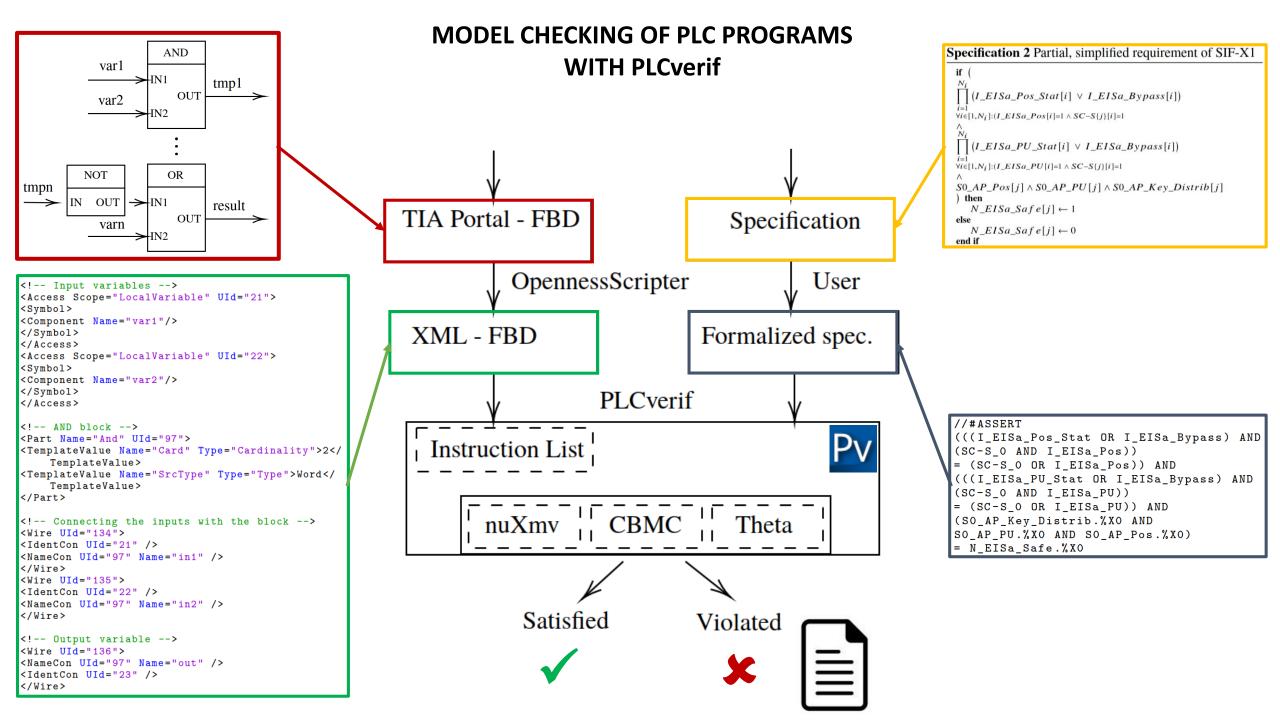
Complex requirement specifications based on *if-else* conditional statement that contains *Boolean formulas*

if (
N _i
$\prod_{i \in I} (I_EISa_Pos_Stat[i] \lor I_EISa_Bypass[i])$
$\forall i \in [1, N_i]$: $(I_EISa_Pos[i]=1 \land SC-S\{j\}[i]=1$
Λ
N _i
$(I_EISa_PU_Stat[i] \lor I_EISa_Bypass[i])$
<i>i</i> =1
$\forall i \in [1, N_i] : (I_EISa_PU[i]=1 \land SC-S\{j\}[i]=1$
Λ
$S0_AP_Pos[j] \land S0_AP_PU[j] \land S0_AP_Key_Distrib[j]$
) then
$N_EISa_Safe[j] \leftarrow 1$
else
$N_EISa_Safe[j] \leftarrow 0$
end if

Example of SIF-X1 behavior		
Source	Variable	Value
Input	EISa_Pos_Stat	0000 0000 0000 1001
Input	EISa_PU_Stat	0000 0000 0000 0001
Input (AP PLC)	S0_AP_Pos	0000 0000 0000 1001
Configuration	EISa_Pos	0000 0000 0000 1001
Configuration	EISa_PU	0000 0000 0000 0
 Configuration Configuration	$SC - S_0$ $SC - S_1$	 0000 0000 0000 0001 0000 0000 0000 1000
Output	N_EISa_Saf e	0000 0000 0000 1001

Example of SIE V1 hobavior

Lots of configuration variables (SIF-X1 **example**)


Configuration variables

Input variables Potential State Space

94 WORD (16-bit) and 4 BOOL 21 WORD (16-bit) and 2 BOOL $5.0 \cdot 10^{555}$

(nb. of combinations to be checked)

Impossible to validate the PLC program **only** with **testing Model checking** is recommended by the Functional Safety standards

Model Checking (MC) is recommended by the Functional Safety standards (IEC 61508 and IEC 61511)

Conclusions of using MC in this project	Future work
detect bugs in the PLC program before commissioning	integration of model checking in PLC programming environments (e.g. TIA portal)
identify deficiencies in the specification	improvement of verification performance with better algorithms and abstraction techniques
help experts to better understand the behaviour of the program for all possible configurations (corner cases)	

PLCverif allows to apply model checking to PLC program and hides the complexity associated to formal methods