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Abstract

The Large Hadron Collider (LHC) at CERN makes use of
a complex collimation system to protect its sensitive equip-
ment from unavoidable beam losses. The collimators are
positioned around the beam respecting a strict transverse
hierarchy. The position of each collimator is determined fol-
lowing a beam-based alignment technique which determines
the required jaw settings for optimum performance. During
the LHC Run 2 (2015-2018), a new automatic alignment
software package was developed and used for collimator
alignments throughout 2018. This paper discusses the us-
ability and flexibility of this new package describing the
implementation in detail, as well as the latest improvements
and features in preparation for Run 3 starting in 2022. The
automation has already successfully decreased the alignment
time by 70% in 2018 and this paper explores how to further
exploit this software package. Its implementation provides a
solid foundation to automatically align any new collimation
configurations in the future, as well as allows for further
analysis and upgrades of its individual modules.

INTRODUCTION

The CERN Large Hadron Collider (LHC) is the world’s
largest particle accelerator, built to accelerate and collide
two counter-rotating beams towards an unprecedented center-
of-mass energy of 14 TeV [1, 2]. The LHC is susceptible to
beam losses from normal and abnormal conditions, which
can perturb the state of superconductivity of its magnets and
potentially damage equipment. A robust collimation system
handles beam losses of halo particles by safely disposing the
losses in the collimation regions, with a 99.998% cleaning
efficiency [3].

The collimation system consists of more than 100 colli-
mators [4], each made up of two parallel absorbing blocks,
referred to as jaws, inside a vacuum tank. The collimators
are installed with a fixed rotational angle, depending on their
location and functionality, which allows to clean in either
the horizontal (H), vertical (V) or skew (S) plane. The jaws
must be positioned symmetrically around the beam to ensure
safe machine operation. Each jaw can be moved individu-
ally using two stepper motors at the jaw corners, allowing
collimators to be positioned at different gaps and angles.
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BEAM-BASED COLLIMATOR
ALIGNMENT

Two types of beam instrumentation are available to align
collimators; the Beam Position Monitoring (BPM) and the
Beam Loss Monitoring (BLM) systems. BPM pick-up but-
tons are installed in 30% of the collimators, embedded in
their jaws to provide a direct measurement of the beam or-
bit at the collimator location [5]. BPMs allow for a safe
and fast alignment by analysing the electrode signals with-
out needing to touch the beam. The remaining 70% of the
collimators can only rely on dedicated BLMs positioned
outside the beam vacuum, immediately downstream from
the collimator [6]. BLMs are used to detect beam losses
generated when halo particles impact the collimator jaws,
such that characteristic spikes recorded in the losses indicate
that the reference halo has been touched. The procedure of
aligning collimators, with BLMs or BPMs, is referred to as
beam-based alignment (BBA).

The beam-based alignment with BLM devices is per-
formed via a four-step procedure established in [6]. This
involves aligning a reference collimator in addition to the
collimator in question (i). The reference collimator is taken
to be the primary collimator (TCP) in the same plane (p) as
collimator i. This creates a reference halo that extends into
the aperture of collimator i. The procedure is to align the ref-
erence collimator before and after collimator i, as depicted
in Fig. 1.

Align 


TCPp

Align 

collimator i

Save 
settings

aligned

alignedaligned

Figure 1: State machine of the beam-based alignment with
reference collimator (TCP), from [7].

Once the beam has a well-defined halo amplitude shaped
with the primary collimator, the alignment of a collimator
can begin. A collimator is aligned by first aligning both jaws
simultaneously towards the beam, followed by independently
aligning the collimator jaws sequentially. The procedure,
as depicted in Fig. 2, involves selecting a BLM threshold
to stop the jaw movement when the recorded beam losses
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surpass this threshold. Once the movement is stopped, the
final step is to determine whether the jaw is aligned. A jaw
is classified as aligned when an alignment spike pattern is
detected in the losses, on two separate alignment instances.
An alignment spike indicates that the collimator jaw has
reached a transverse position closer to the beam than the
reference collimator.
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Figure 2: Flowchart of the beam-based alignment of an
individual collimator, from [7].

The BBA procedure involves moving the collimator jaws
towards the beam in steps of 5-20 𝜇m whilst monitoring
the beam loss signal recorded in the collimator’s respective
BLM. The alignment of any collimator relies on being able
to identify an alignment spike when a jaw touches the ref-
erence halo: in this condition, the jaw reached the same
aperture defined by the primary collimator with an accuracy
of the step size. From this measurement, one can infer the
local orbit position and the relative opening with respect to
the primary collimator, which is used to establish the colli-
mation hierarchy [8]. The BBA depends on being able to
efficiently recognize alignment spikes and distinguish them
from spurious signals that are often encountered, such that
a collimator must continuously move towards the beam ig-
noring any spurious spikes, until a clear alignment spike is
observed.

At the start of each year, and in case of major machine
configuration changes during a run, the LHC goes through a
commissioning phase to ensure that everything is correctly
set up and ready for nominal operation. During the com-
missioning phase various alignment campaigns take place

in order to set up the correct collimation hierarchy. Such
campaigns make use of the BBA to align all collimators
during their respective machine stages (injection, top energy,
collisions, etc.).

To speed-up the procedure during such large alignment
campaigns, the first step is to move all collimators in the
same plane in parallel towards the beam, until the losses
exceed the predefined thresholds. Once all collimators stop
moving, each collimator is then aligned individually. The
primary collimator of the plane is also aligned before and
after moving the plane collimators in parallel to create the
reference halo. The entire procedure is displayed in Fig. 3.
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Figure 3: Flowchart of a collimator alignment campaign
using the BBA in Fig. 2, from [7].

In addition to this, collimators from the two beams can
be aligned in parallel to further speed-up the procedure. In
such cases, one must consider the cross-talk across collima-
tors, whereby losses generated by a collimator are not only
detected by its corresponding BLM, but also by other BLM
detectors around the LHC [9].

LHC COLLIMATION SOFTWARE
ARCHITECTURE

Collimator alignments are performed from the CERN
Control Center using a top-level application, allowing users
to control collimators and monitor their BLM signal. The
software architecture designed for the collimation system is
implemented via a 3-tier structure as shown in Fig. 4.

The hardware consists of actuators, sensors and measure-
ment devices. These allow for adjusting a number of param-
eters, including the collimators’ jaw positions.

This hardware is abstracted and controlled in real-time
through FESA (Front-End Software Architecture) [11], the
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Figure 4: Software architecture diagram showing an ex-
ample of FESA acting as the middleware between the Java
application and hardware devices, from [10].

C/C++ framework used to develop LHC ring front-end
equipment software which sends motor step commands [12].
FESA is a complete environment to design, develop, test
and deploy real-time control software for front-end comput-
ers (FECs), standardizing front-end software development.

The high-level control system communicates with the
FEC through devices. A device is the elementary control
unit that exposes a public interface made up of properties.
Most devices are software abstractions of the hardware (e.g.
a collimator). FESA devices are grouped into a FESA class
which defines the: property interface, private data and real-
time behavior, for all devices belonging to that class.

Finally, the top level consists of Java Swing GUI applica-
tions. These interact with the FESA middleware framework
through the Java API for Parameter Control (JAPC) [13], to
control accelerator devices.

AUTOMATIC BBA IMPLEMENTATION
The fully-automatic alignment software introduced at the

end of Run 2, was used throughout 2018 for all collimator
alignments [14,15]. When provided with a list of collimators,
this new tool is able to automatically align them following
the procedure defined in Fig. 3.

The automation acts as a supervisor of the beam-based
alignment, as it determines the order of tasks to be executed,
controls the flow of collimator alignments, and reacts to the
different states reached during an alignment campaign. The
entire fully-automatic alignment is implemented on top of
the beam-based alignment, within a dedicated FESA class -
CollAlignSupervisor [10].

This software relies on the automation of three main com-
ponents:

• Collimator Selection - The parallel alignment of col-
limators is automatically determined to minimize any
cross-talk across the two beams. This makes use of of-
fline analysis performed on 2018 commissioning data
to determine the pairs of collimators that can be aligned
in parallel without affecting each other [7]. The results
of this analysis are available in an external file which
can be updated in real-time for the FESA class to use
directly.

• Threshold Selection - The collimator movement to-
wards the beam is stopped when the BLM losses exceed
this predefined threshold. The threshold is automati-
cally selected and updated based on the real-time BLM
losses detected at the collimator. Data from 2016 align-
ment campaigns was analysed to determine a suitable
algorithm, which is implemented directly within the
FESA class [16].

• Spike Classification - A “spike” is a signal triggered
when the BLM losses reach the selected threshold. Su-
pervised machine learning (ML) is used to automat-
ically classify the BLM loss spikes into two classes;
alignment spike or spurious spike. Features are ex-
tracted from the BLM loss signal and are used as inputs
to the pre-trained ML models for classification [17].
The pre-trained models are available in external files
which can be updated in real-time for the FESA class
to use through Python. The FESA class handles the
Python call for classification in a dedicated thread,
which then communicates the final result to the original
thread executing the fully-automatic alignment [10].

These three components are developed as individual mod-
ules within the automatic alignment software package, in-
dependently available for any improvements/upgrades, as
demonstrated in [18].

Multi-threading
At any point in time only two collimators can be aligned

in parallel, one from each beam, due to the same reference
halo used by collimators in the same plane, and cross-talk
restrictions across planes. In order to provide this function-
ality, two devices are defined for the CollAlignSupervisor
FESA class, allowing two instances of the fully-automatic
alignment software to run in parallel, i.e. two threads.

Each thread constantly communicates the following:

• The current beam and plane being aligned.

• The status of the primary collimator in the plane, i.e:
moving and waiting statuses.

• The collimator ongoing alignment, for cross-talk pur-
poses.

• The global wait status, i.e. if any thread is waiting for
an action from the other thread.

GUI Application Communication
The CollAlignSupervisor FESA class provides a number

of properties available to the GUI application for collimator
control and monitoring. To begin a new alignment the user
selects the list of collimators to be aligned, which are auto-
matically sorted into the two beams and aligned sequentially.
To align the two beams in parallel the user must open two
instances of the GUI application, as this is common practice
in the Control Centre. In this case, the user must select two
separate lists of collimators to be aligned, one per beam.
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Table 1: CollAlignSupervisor Properties Available for User Monitoring

Property State Definition

Auto status
ERROR_AUTO(-1) Alignment halted with error.
HALT_AUTO(0) User paused/stopped alignment.
PLAY_AUTO(1) Alignment ongoing.

Align status

PARALLEL_ALIGN(-3) Plane collimators moving in parallel.
PARALLEL_DONE(-2) Parallel plane movement ready.
IGNORE(-1) Property not in use.
START_ALIGN(0) Collimator alignment starting.
DONE_ALIGN(1) Collimator aligned.
SAVE_SETTINGS(2) Collimator aligned and settings saved.

Parallel status

DEADLOCK(-1) Both beams waiting for each other.
OK(0) Property not in use.
WAIT_CROSSTALK(1) Wait due to crosstalk with alignment in other beam.
WAIT_PARALLEL(2) Wait parallel plane movement in other beam.
WAIT_PAUSE(3) Wait for other beam to pause alignment.
WAIT_TCP(4) Wait for TCP alignment in other beam.
WAIT_CHANGE(5) Wait for collimator to change in other beam.

Parallel message - Any message to display in GUI.

TCP status

TCP_NOT_DONE(-4) TCP not yet aligned before collimator.
TCP_DONE(-3) TCP aligned before collimator.
PARALLEL(-2) TCP aligned before parallel plane movement.
NOT_MOVING(-1) Property not in use.
BEFORE_COLL(0) Ongoing TCP alignment before collimator.
AFTER_COLL(1) Ongoing TCP alignment after collimator.

Collimator status - Name of collimator ongoing alignment.

Jaw status

NO_JAW(-1) Property not in use.
FIRST(0) First jaw alignment ongoing.
SECOND(1) Second jaw alignment ongoing.
BOTH(2) Both jaws alignment ongoing

Spike class

NO_CLASS(-2) Property not in use.
ERROR(-1) Error on classification.
NO_SPIKE(0) BLM signal classified as non-alignment spike.
SPIKE(1) BLM signal classified as alignment spike.

Two FESA properties are used by the Java application to
start new alignments:

• Multithreading status - FESA exposes which thread(s)
are currently in use, to begin new alignments on avail-
able threads.

• Beam status - The beam(s) being aligned by each thread
to ensure the user does not attempt to align collima-
tors from the same beam in parallel. In cases of beam
overlap the user is requested to wait until the ongo-
ing alignment in the respective beam is completed or
paused/stopped by the user.

Once an alignment campaign begins, the user is allowed
to pause/resume or stop the alignment. The Java application
keeps track of the subset of collimators which are still to
be aligned, such that only these are sent to FESA. The user

can monitor the status of the automatic alignment, as the
FESA class constantly communicates the status through the
properties listed in Table 1.

Automatic Alignment Features

The automatic alignment was designed to be autonomous.
It must independently “make decisions” in real-time based
on the alignment status, until the alignment of all selected
collimators is complete. In addition to this, a number of
“smart” features have been introduced to the automatic align-
ment when aligning the two beams in parallel. The aim of
these features is to imitate, as much as possible, the decisions
a user would take when aligning collimators. This software
must align the collimators as efficiently as possible, whilst
ensuring the correct alignment and must avoid classifying a
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collimator “aligned”, if it has not reached the reference halo.
The incorporated “smart” features include:

• Alternating between collimators from the two beams
that must be aligned sequentially due to cross-talk.

• Automatically wait when the collimators in the other
beam are performing the parallel plane movement.

• Before starting the parallel plane movement, wait for
the collimator in the other beam to finish its alignment
(with TCP) and save settings.

• If both beams are close to start the parallel plane move-
ment, wait to move both planes together.

• On pause then resume, the collimators in the current
plane are assumed to have already moved in parallel.

• On pause/stop, the other thread will automatically re-
sume (if waiting), as expected.

• Any deadlocks are handled by resuming the alignment
on thread 1.

GUI APPLICATION USABILITY
The users have various options newly available at the start

of Run 3, including:

• After selecting the list of collimators to align, subsets of
the list can be further selected for grouping alignments.

• Collimators can be manually removed from the list
during the alignment and re-added at a later stage, in
cases of issues with particular collimator or if different
settings are to be used for different collimators.

• Preset selections for aligning subsets of collimators,
e.g. aligning only collimators with/without BPMs.

• Aligning the TCP before/after collimators (recall Fig. 1)
is now optional for the user to select. A combination
of having a subset of collimators aligned with TCP and
others without TCP is also available.

• Moving the collimators in the current plane in parallel
is now optional. (By default, this is not selected at flat
top due to a beam dump that occured in the past [7].)

Overall the user always has full control of the automatic
alignment with the play/pause/stop buttons. To select subsets
of collimators or to change any settings, the user must first
pause or stop the alignment. Finally, closing the application
is an automatic stop if any alignment is ongoing.

ALIGNMENT OUTLOOK
Introducing the automatic alignment software has made

various alignment configurations accessible and feasible to
execute on a regular basis:

• Aligning collimators at an angle potentially allows for
tighter collimator settings [19]. However, this proce-
dure is longer, as the BBA is applied at different jaw
angles to find the most optimal one. The automatic soft-
ware makes such angular alignments more accessible.

• Any combinations of collimators, with or without TCP,
are now available for the users to perform more effi-
ciently with minimal effort.

• Specific collimator alignments can be performed more
frequently during LHC operation, rather than having to
wait for dedicated beam time for alignment campaigns.

• Collimator configurations, e.g. for ion beams, can now
become more independent. In this case, the automatic
alignment allows for evaluating dedicated configura-
tions for ion beams, rather than being bound to keeping
the identical setup used for proton beams.

CONCLUSION
The LHC is equipped with more than 100 collimators to

protect its sensitive equipment. In order to ensure safe beam
operation, dedicated collimator alignment campaigns are
performed at the start of each year and whenever the LHC
configuration is changed, to determine the collimator settings
for nominal operation. This is a critical phase to ensure safe
operations and various improvements were carried out year
after year, in order to reduce the required time while ensuring
the accurate alignment necessary.

The majority of collimator alignments are applied using
the BBA procedure relying on dedicated beam loss monitors.
This procedure has been fully-automated by means of a
new software package introduced in 2018, providing a solid
foundation to align collimators automatically, yielding a
70% speed-up in collimator alignments [14, 15].

The automatic alignment software package relies on three
components that have been developed as independent mod-
ules; collimator selection, threshold selection and spike clas-
sification. This implementation design provides the flexibil-
ity to independently extract each of these modules for further
analysis and possibly replace with software upgrades.

This software package is readily available with various
new features, to be used as the primary tool for collimator
alignments during Run 3. This will enable the configuration
of new collimator settings for different machine setups, that
were not feasible to be determined in the past due to time
restrictions. Moreover, this will make collimator alignments
accessible during LHC operation to possibly align subsets
of collimators more frequently, rather than waiting for large
alignment campaigns to be scheduled.
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