

LASER MEGAJOULE TARGET CHAMBER DIAGNOSTIC MODULE

Romain CLOT CEA - CESTA, F-33116 Le Barp, France

WEPV036

Commissariat à l'énergie atomique et aux énergies alternatives

cea

PRESENTATION OF TARGET CHAMBER DIAGNOSTIC MODULE (MDCC)

FUNCTIONS AND PERFORMANCES

One system for 3 measurements

- Measurement of optical component damages at the end of laser bundle Vacuum windows 3w gratings
- Measurement of vacuum windows transmission rate
- Measurement of spatial energy distribution (near field) at the end of laser bundle

Performances

100 µm resolution

 $50 \ \mu m$ damage detection

Autonomous functioning by night

Addressing Motor #2

(M6)

Figure 1 : Optical and Motion Blocks

Figure 2 : MDCC Pictures (from qualification laboratory)

Commissariat à l'énergie atomique et aux énergies alternatives

1 VACUUM WINDOW ADDRESSING

 MDCC positionning in front of the vacuum window observed

Figure 3 : MDCC Adressing

I define a define

2 DATA ACQUISITION

- 2 to 7 acquisitions LEDs on (at various focus, depending of vacuum windows inclination)
- 1 acquisition LEDs off

Figure 6 : Vacuum window illumination through green LEDs

MEASUREMENT STAKES

- Ensure installation safety
 2 safety criteria for vacuum windows
 - C1 criteria \rightarrow total damaged surface
 - Damaged surface proportion on the component < 10%

C2 criteria \rightarrow local damaged surface

Damaged surface proportion on a 2x2 cm² sub-aperture < 60%

Enhance optical components durability

To limit costs and because of production and maintenance capability

Damage growth stop thanks to spot blockers

WEPV036

 Recycle loop possible if damage size < 750 μm (reminder : MDCC resolution = 100 μm)

Figure 8 : Blockers seen from start (left) and end (right) of laser bundle

Predict damaging

- Damage laws knowledge for laser performances
- Short term (maintenance) and long term (planification) prediction

Commissariat à l'énergie atomique et aux énergies alternatives

DAMAGING MEASUREMENT SEQUENCE TIMELINE IMPROVEMENTS

WEPV036

- Autonomous damage measurement sequence run by night
- Sequence duration with MDCC original configuration (at integration end of 2018)
 - 6mn45s for a beam (1 vacuum window) -
 - 54mn for a laser bundle (8 vacuum windows) -
 - (By extrapolation) 19h45mn for all the LMJ installation (22 laser bundles, 176 vacuum windows)
- Sequence timeline incompatible with installation timeline
- Search for solutions to fit the 4 hours time slot allocated in the targeted installation timeline

THEME	IMPROVEMENT	IMPLEMENTATION COMPLEXITY ¹	TIME SAVER FROM MDCC ORIGINAL CONFIGURATION (22 CL) ²	PERFORMANCES IMPACT
CAMEDA	Upgrade of acquisition card electronics	Average	4h30	-
CAIVIERA	Camera model change (CCD to CMOS)	High	6h	-
MECHANICALS	Compensation of vacuum window tilt through POCC	Very high	8h	Very good
	Compensation of vacuum window tilt through MDCC	High	8h	Very good
	Addressing motor speed enhancement	Very low	35mn	Minor or none
	Optimisation of useful acquisition number	Low	- 6mn	Very good
MEASUREMENT	Reduction of noise acquisitions number	Low	4h10	Minor
	Decrease of acquisitions resolution	Very low	6h	Very bad
	Deletion of sequence configuration bypassing	Very low	10 mn	-
COMMAND	Deletion of double results production	Very low	3h20	-
CONTROL	Enhancement of results production	Low	1h45	-
	Parallelization of configuration and results production	Average	3h20	-

¹ Cost/Time compromise

Figure 9 : Timeline Improvements ² Improvements combination reduce timesaver compared to sum of individual improvement timesavers

	,	THEME	IMPROVEMENT	IMPLEMENTATION STATE
Phase Mid 20	Phase 0 Mid 2020		Deletion of sequence configuration bypassing	Achieved in 2020
		COMMAND CONTROL	Deletion of double results production	Achieved in 2020
			-	
Phas Mid 2		THEME	IMPROVEMENT	IMPLEMENTATION STATE
	,	CAMERA	Upgrade of acquisition card electronics	Achieved in 2021
	Phase 1 Mid 2021	MESURE	Optimisation of useful acquisition number	Achieved in 2021
			Reduction of noise acquisitions number	Achieved in 2021
		COMMAND CONTROL	Enhancement of results production	Achieved in 2021
Phase 2 Mid 2024		THEME	IMPROVEMENT	IMPLEMENTATION PLANNING
		CAMERA	Camera model change (CCD to CMOS)	2024-2025
	Phase 2 Mid 2024	MECHANICALS	Addressing motor speed enhancement	2022
			Compensation of vacuum window tilt through MDCC	2024
		COMMAND CONTROL	Parallelization of configuration and results production	2024

Figure 10 : Improvement implementation plan

- 3 phases of implementation planned between 2020 to 2024
- Expectation of sequence timeline reduction of more than 50% after the first 2 improvement phases
- Challenging last phase with most complex improvements (mechanicals and camera change)

DAMAGING MEASUREMENT SEQUENCE TIMELINE EVOLUTION

WEPV036

Figure 11 : Evolution of damaging sequence timeline

- Thanks to Phase 1 damaging measurement sequence run in less than 4 hours for 11 laser bundles, next LMJ milestone in 2022
- ▶ Phase 2 is a prequisite for the next milestones (15 and 22 laser bundles)
- Expectation of hardly 2 hours and 20 minutes for LMJ nominal configuration

- Measurement of vacuum window damaging most critical
- MDCC ensures installation safety and enhances optical components durability
- Warning on duration of damaging measurement sequence
- Various improvements identified and implemented or to come
- Evolution of sequence timeline promising to fulfill the needs and expectations

Commissariat à l'énergie atomique et aux énergies alternatives