
AUTOMATED OPERATION OF ITER USING BEHAVIOR TREE

SEMANTICS

W. Van Herck†, B. Bauvir, G. Ferro, ITER Organization, St. Paul lez Durance, France

Abstract

The inherent complexity of the ITER machine and the
diversity of the ways it will be operated in different phases,
like commissioning or engineering operation, poses a great
challenge for striking the right balance between operabil-
ity, integration and automation.

To facilitate the creation and execution of operational
procedures in a robust and repeatable way, a software
framework was designed and developed: the Sequencer. As
a supporting framework for tasks that are mostly goal-ori-
ented, the Sequencer's semantics are based on a behavior
tree model that also supports concurrent flows of execution
[1].

In view of its intended use in very diverse situations,
from small scale tests to full integrated operation, the ar-
chitecture was designed to be composable and extensible
from the start. User interactions with the Sequencer are
fully decoupled and can be linked through dependency in-
jection.

The Sequencer library is currently feature-complete and
comes with a command line interface for the encapsulation
of procedures as system daemons or simple interactive use.
It is highly maintainable due to its small and low complex-
ity code base and dependencies to third party libraries are
properly encapsulated.

Forecasted activities for this year include its use for the
commissioning of plant systems, its incorporation as a
foundation for ITER CODAC central monitoring and auto-
mation functions and the development of a graphical user
interface.

INTRODUCTION

During the different phases of the ITER machine, many
operational procedures will need to be defined, verified and
executed in a traceable and maintainable way.

During regular operation, these procedures are mainly
associated with Operational Tasks, e.g. venting, baking,
etc. These procedures will very likely need to evolve in the
lifetime of ITER, either by: changing the content and order of the different steps, changing parameters that influence the execution of

the steps, or by increasing the automation of the execution by remov-

ing unnecessary user interactions as the procedure be-

comes more mature and trusted.

During the testing, calibration and commissioning of
plant systems, local procedures will be defined to carry out
tasks in a repeatable and traceable way. These procedures
will likely be even more often adapted.

The Sequencer is a software tool meant to facilitate the
creation, adaptation, approval and execution of those pro-
cedures. It also defines the format of these procedures, al-
lowing version control and easy traceability. It provides a
means to replace procedural documents with instructions
and integrate automatic verification.

It will rely on the configuration, monitoring and control
functions of the Supervision and Automation System
(SUP) to carry out certain actions defined in the procedure.
The Sequencer will thus need to adhere to the protocols de-
fined by SUP.

This tool also has to provide the flexibility to be de-
ployed and used in different environments: SUP interfacing with the Sequencer to execute a pro-

cedure, local activities using a standalone GUI, creation and editing can be done in an offline environ-

ment.

This paper describes the design and implementation
choices and provides an outlook to future enhancements or
extensions of the framework.

DESIGN

The language of operational procedures, whether for en-
gineering operations or commissioning tasks, formulates
certain goals that need to be achieved at each step. The Se-
quencer framework was based on behavior tree semantics
since, as a formal language, it is generally better adapted to
express such goal-oriented procedures than for example fi-
nite state machines. Goals can be described by a variety of
rules that apply to sub-goals, such as: a Sequence succeeds
if all its sub-goals succeed. Another advantage of behavior
tree semantics is that it can express parallelism in a natural
way. This is often required in operational procedures,
where certain goals need to be achieved while maintaining
conditions on the machine.

A procedure in the Sequencer library consists of tree
structures of instruction objects and a workspace, provid-
ing access to variables that need to be shared or communi-
cated between instructions. A procedure is executed by
sending 'Execute' commands to a root instruction in the tree
until it indicates failure or success. The root instruction is
responsible for propagating this 'Execute' command further
down the tree.

Figure 1 shows a simplified example of how the goal of
starting up a plant system consists of either successfully
activating the system (left branch) or, if that fails, executing
steps to recover the system to a known and safe state (right
branch). Each of those goals can in turn be expressed as a
number of actions that need to be carried out sequentially.

† Walter.Vanherck@iter.org

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV006

WEPV006C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

628 Feedback Control, Machine Tuning and Optimization

Figure 1: Example procedure for starting up a plant system.

The 'Action' instructions typically contain the domain
specific commands or goals, while the compound instruc-
tions, such as 'Sequence' or 'Fallback', are domain agnostic.

The core library of the Sequencer framework contains
generic instructions and variable types. Domain specific
behavior or general extensions can be provided by a plugin
mechanism, where extra instruction or variable types can
be defined. By loading different plugins, the Sequencer
framework can be used in different environments.

The framework also supports serialization of procedures
in a human readable format (currently only XML is sup-
ported) to allow for version control and traceability.

IMPLEMENTATION AND QUALITY AS-
SURANCE

To support usage of the Sequencer framework for varied
operational tasks and in different environments, composa-
bility and extensibility are key. Composability is provided
by the basic building blocks of behavior trees: ac-
tions/goals are aggregated into compound goals. The Se-
quencer framework also allows to include a whole instruc-
tion tree from either the same or another procedure file.
This allows designers of operational procedures to build
complex procedures from ever simpler building blocks.

Extensibility is provided by a plugin mechanism and a
generic API for instructions and variables. Behavior can
then be customized by implementing instructions and var-
iables that comply with this API and then exposing them as
a plugin library.

The framework is implemented in C++11 and is highly
maintainable due to its small codebase (currently ca. 5k
lines of code) and the amount of decoupling between dif-
ferent components. The source code passes the current cri-
teria for CODAC Software Integrity Level 1 (>95% unit
test coverage, no major/critical/blocker issues).

User interaction with procedure execution, e.g. to allow
for step-by-step execution or get visual feedback on the
progress, is provided by a pure interface and concrete im-
plementations of this user interface are injected into the
framework (see Fig. 2). The core framework currently pro-
vides two such implementations:

 sequencer-cli: a command line interface to run proce-

dure files with configurable amount of verbosity, sequencer-daemon: a non-interactive executable tar-

geted to be run as a daemon process.

Figure 2: Constructor injection of UserInterface into the

execution engine (Runner). Here, a command line interface

(CLInterface) is shown as an example.

FORWARD LOOK

It is expected that the framework, but also its possible
use cases, will continue to evolve due to changing and ex-
tending requirements. For reasons of compatibility and sta-
bility, such changes need to minimize the impact on the
core library and should therefore be implemented in
plugins whenever possible.

For the coming year, a number of use cases and further
development activities have been identified: The framework will be used during the commission-

ing of plant systems: procedures will be developed to

commission and automate routine tasks, such as start-

ing up or shutting down the plant system. Concretely,

it will be used for the commissioning of the Reactive

Power Compensation and Harmonic Filter system and

for the Site Acceptance Test and commissioning of

the Magnetics Diagnostics. The Sequencer will also be evaluated for use in mon-

itoring the ITER plant and automating central control

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV006

Feedback Control, Machine Tuning and Optimization

WEPV006

629

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

system activities. As part of these activities, a plugin

is being developed for SUP specific instructions (e.g.

for plant system configuration and verification). Lastly, a graphical user interface (GUI) is being de-

veloped that will enable users to easily create and edit

Sequencer procedures. This GUI will also allow to in-

teractively execute such procedures in multiple ways:

step-by-step execution, breakpoints at given instruc-

tions, etc.

REFERENCES

[1] R. G. Dromey, “Formalizing the Transition from Require-
ments to Design”, in Mathematical Frameworks for Compo-
nent Software Models for Analysis and Synthesis, Nov. 2006,
pp. 173-205. doi:10.1142/9789812772831_0006

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV006

WEPV006C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

630 Feedback Control, Machine Tuning and Optimization

