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Abstract
In recent years, several machine learning (ML) based

projects have been developed to support automated mon-
itoring and operation of the DELTA electron storage ring
facility. This includes self-regulating global and local orbit
correction of the stored electron beam, betatron tune feed-
back as well as electron transfer rate (injection) optimization.
Furthermore, the implementation for a ML-based chromatic-
ity control is currently prepared. Some of these processes
were initially simulated and then successfully transferred to
real machine operation. This report provides an overview of
the current status of these projects.

INTRODUCTION
DELTA is a 1.5–GeV electron storage ring facility oper-

ated by the TU Dortmund University as a synchroton light
source [1] and as a facility for ultrashort pulses in the VUV
and THz regime [2,3]. Due to thermal orbit movements and
magnetic field changes caused by different insertion device
setups, the beam orbit and the betatron tunes may vary dur-
ing storage ring operation. Therefore, autonomous local and
global beam position corrections as well as self-adjusting
tunes controls are important tasks, as otherwise sudden beam
losses can occur. For this purpose, conventional, fully con-
nected, shallow feed-forward neural networks (NNs) were
investigated and have been successfully implemented. Both
machine learning (ML) based controls were first simulated
and tested on a detailed storage ring model within the Ac-
celerator Toolbox (AT, [4, 5]) framework and were then suc-
cessfully applied during real accelerator operation.

So far, the storage ring chromaticity values have been
adjusted empirically based on experience. Setting of new
values can only be done by time-consuming trial and error.
For this reason, a ML-based algorithm for automated chro-
maticity adjustment is currently being prepared, very similar
to the already implemented ML-based betatron tunes control.
Classical, non-deep NNs are also used in this case.

At present, the electron transfer efficiency from the booster
synchrotron to the storage ring is being optimized with the
help of ML techniques, too. Here, NNs as well as Gaussian
process regression (GPR) methods are explored.

ORBIT CORRECTION
Extensive studies for a ML-based orbit correction (OC) at

the storage ring DELTA started already in 2017. Therefore,
initially only the horizontal beam positions were disturbed by
horizontally deflection corrector magnets (steerer) and the
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corresponding data pairs (orbit/steerer changes) were used
as training data for supervised learning of fully connected
neural NNs. First simulations have shown that already three-
layered neural networks were able to learn correlations be-
tween beam position deviations and steerer strength changes.
The application of such trained networks on the real storage
ring results in similarly good beam position correction qual-
ity compared to conventional OC methods like SVD-based
(singular value decomposition [6]) programs, however, with
significantly fewer correction steps [7]. Subsequently, the
ML algorithm was extended to both accelerator planes (𝑥/𝑦-
coupled orbit), including weighted beam position monitor
(BPM) signals. Thus, exposed positions in the DELTA stor-
age ring (e.g., injection region, synchrotron radiation source
points) can now be adequately considered in the ML-based
OC.

In comparison with a more advanced numerical OC ap-
proach (qp-cone [8, 9]), the ML-based version results also
in similar correction performance, which is scored by the
weighted rms orbit error summed for both planes. On av-
erage the ML method still required fewer OC steps in this
benchmark.

Exemplarity, some benchmark results are depicted in
Fig. 1 (ML-based) and Fig. 2 (conventional). Even beam po-
sition deviations provoked by perturbations which were not
applied during the training (e-j) could also be compensated
equally. In all cases, after each provoked orbit disturbance,
the residual weighted orbit error, as a measure for the OC

Figure 1: Individual correction steps for different scenarios
of orbit deviations (a-j) performed with the ML-based OC
program. In comparison to Fig. 2, similar final residual
orbit qualities, scored by the weighted rms orbit error, are
achieved in significantly fewer iterations.
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Figure 2: Number of orbit correction iterations to compen-
sate the same orbit disturbing sources (a-j) as indicated in
Fig. 1 performed with a qp-cone-based conventional orbit
correction program [8,9].

performance, converged to less than 3 mm. Further details
of the ML-based orbit correction procedure are documented
in [7, 10].

BETATRON TUNE CONTROL
To obtain appropriate data for NN training, the set val-

ues of seven independent quadrupole families located in the
storage ring arcs were randomly changed and subsequently
the associated tune shifts were recorded. Three-layered NNs
were trained with experimental machine data as well as with
simulated data based on a detailed lattice model of the stor-

Figure 3: Validation of NNs trained with experimental data
and applied to real machine operation. Two experiments
demonstrate tune matching from start to goal tunes without
beam losses. In the first experiment, 10 steps were performed
(superconducting wiggler magnet switched on, rectangular
markers) and in the second test 50 steps were executed (su-
perconducting wiggler magnet switched off, diamond mark-
ers) [12].

age ring [11]. Thereby, for supervised learning a variety of
different gradient backpropagation methods were tested [12].

With both data sources, comparable tune correction ac-
curacies were achieved, both, in real machine operation and
for the simulated storage ring model. In addition, it was also
possible to perform tunes control ’crosswise’, i.e., control
of the real storage ring with NNs only trained by simulated
model data; and vice versa, NNs only trained with real ma-
chine data and then applied to the simulation model. In all
cases, the desired tune matching was successful.

In contrast to conventional PID control methods [13],
trained NNs are able to approach the desired target tunes in
fewer steps, which could enable a more controlled scanning
in the tune diagram. Since the DELTA quadrupole power
supplies lack the feature to drive synchronously in real-time,
an iterative procedure for the NN-based tune control loop
must necessarily be applied. Figure 3 depicts typical ML-
based tune matching examples. Further examples and a more
detailed description can be found in [12].

CHROMATICITY CONTROL
Similar to the ML-based tune control, the procedure can

likewise be transferred to an automatic ML-based chromatic-
ity control. At the DELTA storage ring, the chromaticity
values are manually adjusted using 15 independent sextupole
power supply circuits. However, to account for the symme-
try of the optics, these circuits are grouped into 7 sextupole
families during standard machine operation.

To acquire suitable ML training data, first, the sextupole
strengths are scanned systematically for single and then ran-
domly varied for all families. For each strength change,
the associated chromaticity shifts are measured. Figure 4
visualizes corresponding simulation results for a DELTA
storage ring model. With these data pairs (strength varia-

Figure 4: Distribution of 3000 chromaticity shifts invoked
by uniformly randomized strength variations of seven inde-
pendent sextupole families. The data are obtained by AT
optics calculations based on a Delta storage ring model and
are used for supervised training of NNs.
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Figure 5: Example for verification of NNs trained by sim-
ulated data (see Fig. 4) and applied to the DELTA storage
ring model. The desired target values for compensated chro-
maticity (goal: 𝜉𝑥 = 𝜉𝑦 = 0) were reached in iterative steps
starting at the setting for natural chromaticity (𝜉𝑥 = −21,𝜉𝑦 = −8, sextupoles switched off).

Figure 6: FFT beam spectrum from turn-by-turn orbit data
recorded at a dedicated ’fast’ BPM (blue) and after (red) a
cavity radiofrequency (RF) variation of 5 kHz. The horizon-
tal and vertical chromaticities are calculated by determining
the betatron tune peak shifts induced by the cavity RF varia-
tion.

tions and chromaticity shifts), ’chromaticity-models’ will be
trained, which later could serve to adjust and control the chro-
maticity values automatically during real machine operation.
Figure 5 illustrates an example for simulated chromaticity
matching performed with a 3-layered NN which has been
trained by conjugate gradient backpropagation using the
data depicted in Fig. 4. The natural chromaticity (𝜉𝑥 = −21,𝜉𝑦 = −8) which occurs with all sextupole switched off
(start) can be adjusted to full chromaticity compensated val-
ues (𝜉𝑥 = 𝜉𝑦 = 0) by the ML-based control loop. The step
size (number of iterations) is adjustable and depends mainly
on the granularity of the trainings data.

For chromaticity determination in real ring operation, the
cavity radiofrequency (RF) must be shifted and then the tune
shifts Δ𝑄 is determined via an FFT spectrum from turn-by-
turn orbit data at a dedicated ’fast’ BPM (see Fig. 6 as an
example). With Δ𝑄 = 𝜉 ⋅ Δ𝑝/𝑝 follows for the chromaticity

𝜉 = Δ𝑄 ⋅ 𝑝/Δ𝑝 = −𝛼𝑐ℎΔ𝑓𝛽/Δ𝑓RF. Δ𝑓RF corresponds to
changes of the cavity radiofrequency, Δ𝑓𝛽 is the measured
betatron frequency shift, ℎ is the harmonic number and the
momentum compaction factor 𝛼𝑐 = (Δ𝐿/𝐿)/(Δ𝑝/𝑝) re-
lates the relative orbit path length change Δ𝐿/𝐿 to the rela-
tive momentum change Δ𝑝/𝑝. Work on this project has just
started in the framework of a master’s thesis.

INJECTION OPTIMIZATION
Already in 2005, first attempts were made to optimize the

electron transfer rate (injection efficiency) from the booster
synchrotron to the storage ring by a combination of genetic
algorithms and neural networks [14, 15]. Currently, this
idea is being resumed but now with an expanded number
of parameters and with a significantly enlarged database for
ML-based training. In addition to the strength settings of
the transfer line magnets, the injection elements of the stor-
age ring (e.g., kicker magnets, magnets of a static injection
bump) as well as the trigger timings of all pulsed transfer
line and injection magnets are now taken into account, too.

In total, currently up to 30 different parameters can be
varied systematically or randomly. For each individual in-
jection parameter variation, the corresponding change of the
injection efficiency is measured simultaneously. In this way,
several thousand pairs of experimental data sets were gen-
erated which served as inputs for various machine learning
techniques. So far, classical feed-forward neural networks
(NNs) and Gaussian process regression (GPR) methods were
used for modeling [16,17]. First training results are shown
in Fig. 7 (GPR-based) and Fig. 8 (NN-based). They show
the trained model predictions of the injection efficiencies
as a function of approx. 750 measured transfer efficiencies.

Figure 7: Injection efficiencies predicted by a Gaussian pro-
cess regression (GPR) model versus measured efficiencies.
The machine learning was performed with approx. 750 mea-
sured data sets. The GPR applied the nonisotropic exponen-
tial kernel function for model adaption [16]. The fit results
in a correlation coefficient of 𝑅2 = 0.89 and a root mean
squared value (RMSE) of 4.3.
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Figure 8: Injection efficiencies predicted by a model based
on a narrow neural network (NN) versus measured effi-
ciencies. The machine learning was performed with the
same 750 data sets as used for GPR-based modelling. The
NN is composed of three fully connected ReLU-layers
(28/10/1) [16]. The fit results in a correlation coefficient
of 𝑅2 = 0.67 and a root mean squared value (RMSE) of 7.5.

The plots were obtained applying the 𝑘-fold cross validation
method. Therefore, the training data sets were randomly
shuffled and then divided into 𝑘 partitions. For each training-
validation iteration a different partition for validation was
used. The remaining data was applied for testing. Thus,
each data partition was used once for validation and 𝑘 − 1
times for training.

Both ML methods find clear correlations, whereby the
GPR-trained model results in a significantly larger correla-
tion coefficient R and thus seemed to be more suitable for
transfer rate modeling. The next step is to apply these models
to keep the injection efficiency at a high level in an auto-
mated way using an optimization algorithm (e.g. BFGS [18]
or Bayesian optimization [19]) without the need for oper-
ator interventions [20]. These studies are currently being
continued.

SUMMARY
ML-based techniques are increasingly replacing conven-

tional optimization methods in the fields of particle acceler-
ator controls. At the electron storage ring facility DELTA, it
was demonstrated that specially designed and trained neural
networks are suitable for a variety of control tasks. Super-
vised training of the NNs was performed with data recorded
during real machine operation and with simulation data
based on accelerator models. Compared to classical nu-
merical methods, it was shown that the different ML-based
applications could achieve comparable correction accuracies.
In contrast to conventional numerical methods, neural net-
works are in principle able to converge to the desired target
values in fewer iterations, resulting in a faster correction con-
vergence behaviour. Inspired by a variety of ML-supported

applications in other scientific fields, additional use cases in
the domain of accelerator controls are being evaluated. First
ideas for a neuro-fuzzy feedback loop, e.g., for the water
cooling system of the new EU-type RF cavity installed at
the DELTA storage ring, have already been discussed [7]. It
is planned to migrate all ML-based programs to a dedicated
GPU-based ML server which provides a powerful hardware
platform and a more user friendly ML framework (ML work-
flow) for future, more sophisticated ML applications.
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