
RENOVATION OF THE BEAM-BASED FEEDBACK CONTROLLER IN THE
LHC

L. Grech∗, G. Valentino, University of Malta, MSD 2080 Msida, Malta
D. Alves, A.Calia, M. Hostettler, J. Wenninger, S. Jackson, CERN, 1211 Geneva 23, Switzerland

Abstract
This work presents an extensive overview of the design

choices and implementation of the Beam-Based Feedback
System (BBFS) used in operation until the LHC Run 2. The
main limitations of the BBFS are listed and a new design
called BFCLHC, which uses the CERN Front-End Software
Architecture (FESA), framework is proposed. The main im-
plementation details and new features which improve upon
the usability of the new design are then emphasised. Finally,
a hardware agnostic testing framework developed by the
LHC operations section is introduced.

INTRODUCTION
The Large Hadron Collider (LHC) was designed to handle

particle momenta between one and two orders of magnitude
higher than previous accelerators [1]. The highly energetic
beams inside the vacuum chambers are stripped off of halo
particles by a beam cleaning and machine protection sys-
tem, also known as the collimation system. The collimation
system required the machine tolerances to be tightened to
work effectively. As a result, the LHC was the first proton
accelerator to require automatic feedback control systems
on various beam and machine parameters [2].

Beam-Based Feedback System (BBFS)

> 500> 25012Beam Position Monitors

Base-Band Tune Dipole MagnetsQuadrupole Magnets

Q Quad Dipole

> 1000 BPM

Figure 1: Schematic view of the BBFS in the LHC complex.

In this work, Beam-Based Feedback System (BBFS) de-
notes the program which was originally responsible for im-
plementing the feedback control of the Radio Frequency
(RF) systems, orbit and tune [3]. Figure 1 shows the BBFS
within the LHC complex. The systematic beam energy off-
set from the ideal trajectory can be inferred from the orbit
and in turn, the orbit is obtained from the measurements of
∗ leander.grech.14@um.edu.mt

1088 Beam Position Monitors (BPMs) placed at different
locations in the LHC [2, 4]. The Base-Band Tune (BBQ)
systems are responsible for estimating the horizontal and
vertical tunes of both beams in the LHC [5]. It is well known
that the tune estimates from the BBQ were unstable due to
50 Hz noise harmonics present in the BBQ spectra [6, 7].
This instability also caused the Tune Feedback (QFB) to
frequently switch off. As a consequence, the QFB was used
intermittently and only when necessary, e.g. at the start of
the ramp.

In its original design, the BBFS was foreseen to automat-
ically control the coupling and chromaticity as well. Both
these quantities are derived estimates from the BBQ system
measurements. Considering that the tune estimates were
often unstable, the control of coupling and chromaticity was
deemed impractical to be used in operation, despite being
implemented in the code.

The BBFS was made up of two components, which were
historically named the Orbit Feedback Controller (OFC) and
the Orbit Feedback Service Unit (OFSU). The OFC com-
prised the main program written in C++ and was primarily
responsible for communicating with real-time Front-End
Computers (FECs) to obtain beam measurements and ap-
plying magnetic corrections. The OFSU was implemented
using the Front-End Software Architecture (FESA) frame-
work used at CERN [8].

This work will provide a summary of the design and the
limitations of the BBFS which was used in operation until
the end of Run 2 in 2018. The BBFS underwent renovation
during the LHC Long Shutdown 2 (LS2) and the upgraded
version is called the Beam Feedback Controller LHC (BF-
CLHC). The BFCLHC is a FESA-based application which
incorporates all the useful functionality of the BBFS, along
with new features requested by the LHC operators. During
LS2, our colleagues from the LHC operations section also
developed a testing framework for the BFCLHC which for
the first time allows closed loop tests to be performed on the
feedbacks offline.

DESIGN UNTIL LHC RUN 2
Figure 2 illustrates a more detailed view of the BBFS

architecture which is comprised of the OFSU and the OFC.
The OFSU is connected to the OFC via a private Ethernet
connection where Transmission Control Protocol (TCP) is
used for lossless communication of the OFC settings and
User Datagram Protocol (UDP) is used to stream real-time
acquisition BPM, BBQ and magnet data from the OFC to
the OFSU. Measurement data coming from the BPM and
the BBQ systems is received by the OFC in the form of User

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

Feedback Control, Machine Tuning and Optimization

WEPV019

671

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Datagram Protocol (UDP) packets. The BPM packets arrive
from 67 FECs, which can interface up to 18 BPMs each. In
addition, longitudinally consecutive BPMs are interleaved
amongst at least two, geographically nearby FECs, so that
if a FEC fails, a contiguous section worth of measurements
is not entirely lost. Similarly, the calculated current correc-
tions for the magnets are sent to the Power Converter (PC)
gateways via UDP packets. These gateways are connected
to the Function Generator/Controllers (FGCs) which control
the current flowing in the magnets [9].

Figure 2: Schematic view of the data paths and a more
detailed view of the BBFS architecture.

The principle design objective of the BBFS was to obtain
a deterministic behaviour of the feedbacks on the hardware
available at the time. The modular nature of the BBFS al-
lowed the OFC to collect information about the tune and
orbit in real-time, and calculate the required magnet correc-
tions at a rate of 25 Hz. By keeping the program structure of
the OFC simple, the designers could ensure a deterministic
execution [2].

The OFC was written in object-oriented C++ and relied
heavily on ROOT libraries. ROOT is written and maintained
by CERN and was originally developed for efficient calcula-
tions on very large data accumulated by high-energy physics
experiments [10]. The programming paradigm of ROOT is
object-oriented where all objects derive from what is called
a TObject. All TObjects can use the various functionali-
ties implemented in ROOT, such as I/O handling, memory
management and error handling. The OFC consists of sev-
eral TObject-derived classes, which implement all the re-
quired functionality. The core of the OFC was a loop-based
program, where every iteration was one simultaneous pass
through the control loops of the OFC and the QFB. The
latest version of the OFC used ROOT Release 5.34/20 [11].

Figure 2 also shows that the OFSU served as an interface
for the OFC and was used by the LHC operators to monitor
and control the OFC [3]. The OFSU was also responsible
for loading some of the configuration files, which contained
the settings and beam optics required by the OFC. This infor-
mation was communicated to the OFC upon initialisation as
well as by request of the operators. The OFSU also served

as a hub for the data collected by the OFC and as a result
a myriad of Graphical User Interfaces (GUIs) used by the
LHC operators depended on the data relayed by the OFSU.
One example is the relay of BPM orbit data, which: (a) un-
derwent serialisation through ROOT TInterlink objects; (b)
sent via UDP to the OFSU; (c) and finally set to the appro-
priate OFSU FESA property for orbit data. The OFSU was
responsible for logging the data collected by the OFC along
with the settings of the BBFS itself. The OFSU was devel-
oped using the FESA real-time framework and the sheer
number of tasks described above made the OFSU the largest
FESA-based application at CERN until LHC Run 2 [8, 12].

In its initial implementation the BBFS comprised a series
of nested feedback loops, each controlling a specific LHC
parameter. First and foremost was the orbit feedback loop,
which calculated the change in Closed Orbit Dipole (COD)
deflections necessary to steer the beam towards the reference
orbit. Second was the RF frequency feedback loop, which
calculated the change in frequency required in the RF cavities
to counteract any systematic momentum offset introduced
by the CODs during orbit correction. The other three nested
feedback loops controlled the tune, coupling and chromatic-
ity simultaneously. It is important to note that in the latest
implementation of the OFC, only the QFB remained. Due to
the instabilities observed in the tune estimates, subsequently
derived measurements, namely coupling and chromaticity,
were not reliable enough to allow for feedback loops of their
own. When adjustments on the coupling and chromaticity
were required, operator-calculated corrections had to be sent
manually to the skew quadrupoles and sextupoles [13].

The impact of a change of currents in the CODs on the
beam orbit is estimated using a Response Matrix (RM). The
main principle behind the orbit correction performed by the
OFC is to: (a) measure the average beam positions using
the BPMs; (b) calculate its difference with respect to the
reference orbit; (c) use a Proportional-Integral (PI) controller
as a feedback loop; (d) calculate the change in current needed
in each COD to correct the beam position; (e) scale down all
the currents by the same factor to accommodate the slowest
acting magnet and finally; (f) send the current corrections to
the CODs. A similar procedure is used by the QFB to correct
the tunes in both planes for both beams using quadrupole
correctors.

Figure 3 shows the flowchart of the OFC main program.
GLOBAL_RUN was the variable which controlled the control
loop. The INIT block is expanded in Fig. 4 where it can be
seen that several initialisation files were required to set up
the OFC. The configuration file set up the thread parameters
such as their priority and affinity and also contained two
important parameters related to testing the OFC; SIM_MODE
and BASE_PORT. SIM_MODE were used extensively through-
out all the OFC code to change its behaviour during test-
ing. Functionalities such as sending the UDP packets to the
Power Converters (PCs) and RF cavities were suppressed
when SIM_MODE was set in order to confine the output of
the OFC to the testing framework. BASE_PORT served as an
offset port number for all the network sockets used by the

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

WEPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

672 Feedback Control, Machine Tuning and Optimization

false

true

false

true

START

END

INIT

CONC

COMP

LISTEN OT

Compute packet
statistics

GLOBAL_RUN = true

GLOBAL_RUN = false

GLOBAL_RUN

OFSU requested
to turn OFF FB

Check BPM and
COD statuses

Send FGC and RF
UDP packets

Control Loop

Figure 3: Flowchart of the main program of the OFC.

OFC. It was only changed during testing, when data was
supplied by the testing framework. The configuration file
contained other parameters, however, their use had become
deprecated throughout the OFC lifetime.

The OFC also required a ROOT file upon initialisation
which contained default optics stored in a ROOT object. This
file existed since the first version of the OFC and due to its
age it proved difficult to verify its contents. Its removal was
also deemed dangerous due to its ubiquitous use throughout
the initialisation code and therefore it was left up to the next
major renovation to be removed. Several other text files
were also required upon initialisation which provided: a) the
hostnames of all the FECs that the OFC communicated with;
b) the parameters of the magnets, e.g. maximum current
rate; c) network routing information for all the BPMs, CODs,
and quadrupoles required to create the network packets.

The OFSU was the interface that the operators used dur-
ing real operation in order to monitor the status of the OFC,
and changing parameters needed for operation. Two of the
main problems with the OFSU were that it was bloated with
unused functionality as well as complicated and less intuitive
procedures which were required to change certain settings,
e.g. fetching optics. The early design of the BBFS allowed
access to more dedicated settings in the OFC, however, op-

INIT

GLOBAL_RUN = false

INIT

Get thread attributes
Configuration

(.xml)
Get SIM_MODE
Get BASE_PORT

Default optics
(.root)

Get default optics
Create optics objects

Get hostnames of PC
gateways

Mapping
files (.txt)

Create concentrator
objects

Create correction objects

Object
creation

successful

true

false

Connect to OFSU
Bind to OT socket

Lock 500MB of
heap memory

Start threads

Initialisation
Files

Figure 4: Flowchart of the INIT block in Fig. 3.

erator experience throughout the years has dictated which
functionality to keep and improve, and which is not relevant
for operations. On a final note, to avoid changing the major
release of the BBFS during Run 2, any code renovations
were delayed until LS2.

CODE RENOVATION
During LS2 it was decided to condense all the code in the

BBFS, into one FESA-based application called BFCLHC.
The hardware requirements were no longer an issue follow-
ing a hardware upgrade of the OFC and OFSU machines.
The hardware upgrade was from a 24-core, 32 GB RAM, 15
MB cache machine to a 64-core, 200 GB RAM and 22MB
cache machine [14]. This upgrade meant that the conserva-
tive measures taken in the initial design of the OFC could be
relaxed. During LHC operation, the OFC never crashed due
to insufficient hardware requirements, therefore the hardware
upgrade meant that it was safe to implement more advanced
code and retain a deterministic execution.

At the same time, the FESA framework was undergoing
development. With the introduction of new features, most
of the basic operations done by the BBFS until Run 2 could
be replaced by simple FESA commands. Some of the code
used in the OFC and QFB was left intact: a) concentration
of the COD, BPM and BBQ data; b) computation of the cor-
rections required on the CODs and the tuning quadrupoles;
c) Sending of the corrections to the respective gateways. The
main program shown in Fig. 3 and the OFSU FESA class,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

Feedback Control, Machine Tuning and Optimization

WEPV019

673

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Figure 5: State machine of the FP as implemented in the
BFCLHC.

contained the majority of the code which was replaced. The
FESA framework was used to re-implement the logic of the
main program.

To improve maintainability, the BFCLHC was designed
to have a minimal amount of user code by relying more
on the FESA framework features to implement the basic
logic of the BFCLHC. For example, the data concentration
is performed in a Real-Time Action (RTA), which updates
the shared memory of the device with the latest BPM orbit
data. A standard FESA interface property is then set up for
providing the most recent BPM orbit measurements directly
from shared memory. Following this design approach, triv-
ial tasks (e.g. relaying data from real-time devices to users)
were easier to implement and to debug. Considering that
back-compatibility is ensured by FESA, future versions of
BFCLHC will be easier to maintain [15]. It is important to
note that the design of the BFCLHC Application Program-
ming Interface (API) was based on the API of the OFSU,
however, it was adapted significantly to better fit the needs
of the operators.

Function Players (FPs) was a new feature that was added
to the BFCLHC, at the request of the LHC operators. Using
FPs for automated settings control was introduced in [16]. In
the BFCLHC, the FPs are used to automate the change of: a)
reference values, e.g. reference orbit; b) control loop gains;
and c) optics models. Presently, the BFCLHC can accept
a list of reference values along with a list of time offsets
when the references should be applied. Linear interpolation
of reference values was also implemented, e.g. varying the
reference orbit linearly. Each FP is used depending on its
current state. Figure 5 shows the general state machine of
the FPs as implemented in the BFCLHC. The state is stored
in the FESA shared memory, and can be changed by a FESA
command. To change the state of the FP, the operators must
either manually send events, or synchronise them with LHC
timing. Some events are only available in specific states and

a FESA exception is thrown when the user violates the state
machine rules shown in Fig. 5; e.g. when the FP is in the
ARMED state, only a TRIGGER or RESET event can change its
state. A function can only be set when the respective FP is
in IDLE state.

The optics calculation procedures are now delegated to
the BFCLHC class. The approach to initialising and loading
new optics to the feedbacks has therefore been changed. Any
optics model must now be added to the BFCLHC memory
via a FESA set command. Subsequently, a FP must be used
to instruct the feedbacks when to change to new optics. The
operators rely on their own sub-routines which can obtain a
set of optic models from LHC Software Architecture (LSA)
settings database [17], and forward it to the BFCLHC.

Following the Hardware Acceleration (HA) feasibility
study in [18], we concluded that the use of GPUs did not
improve computation times when calculating the Pseudo-
Inverse (PInv) of the RMs when compared to a multi-core
approach. In the new design, after an optics model is added,
a new thread is spawned which calculates the Response
Matrix (RM) as well as the corresponding PInv. In the event
of a sensor or magnet malfunction, a thread per optic model
can be spawned to re-calculate the adjusted models without
blocking the control loop. The time to perform an optics
recalculation took in the order of minutes to complete on
the BBFS. The BFCLHC reduces this time to the order of
seconds, which makes it possible to attempt in real-time in
the LHC Run 3.

TESTING FRAMEWORK
The first formal testing of the OFC occurred at the start

of the LHC Run 2 in 2014/15, during a code renovation that
saw to the porting of the OFC and OFSU code from a 32-bit
to a 64-bit architecture [19]. Considering the maintenance
and correct porting of more than 90,000 lines of code, our
colleagues from the operations group have built a separate
testing framework during LS2 which mimics the input sig-
nals of the BBFS, by sending UDP packets disguised as
coming from the BPM FECs.

The original design of the OFC made this operation com-
plex due to its global control loop architecture. A series of
code changes had to be made to the OFC and OFSU them-
selves simply to be able to test them. In particular, a global
variable controlled key mechanisms within the OFC which
determined whether the code was being used operationally
or within a simulation. In addition, the output network ports
were also tweaked in order to allow for a different base port
to be used during testing. This was done as a protective mea-
sure against UDP packets being sent to the magnets during
testing.

One of the main goals of the first testing framework was
to verify that the renovated code respected all operational
boundaries of the OFC. An identical hardware setup which
was set up as a back-up to the operational hardware, had to
be used to run the tests. The tests were written in a Java-
embedded Domain Specific Language (eDSL) and the JUnit

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

WEPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

674 Feedback Control, Machine Tuning and Optimization

Figure 6: Testing framework schematic, showing the use
of Docker containers in the GitLab Continuous Integration
(CI) framework.

Figure 7: Screenshot of the BFCLHC testing framework test
results using CI on GitLab.

framework was used to create the tests and generate reports.
Due to the inherent complexity of this testing framework it
was quickly realised that it was difficult to maintain and to
use efficiently. Despite these limitations, this testing frame-
work was successful in detecting bugs which aided the code
renovation prior to the LHC Run 2.

The new BFCLHC testing framework is still undergoing
development, and will continue at least until the start of Run
3. Figure 6 shows the basic structure of the latest design. It
was decided to make the testing framework hardware agnos-
tic with the use of Docker containers [20]. This new design
allowed tests to be performed on the BFCLHC during active
development through the use of Continuous Integration (CI)
tools in GitLab [21]. As an example, algorithm 1 shows the
pseudo-code for a test that checks the limit on the number
of optics that can be loaded to the BFCLHC. Figure 7 is
a screenshot from GitLab CI which shows the results of
the tests that were performed automatically after successful
compilation and Docker image creation.

CONCLUSION
The BBFS implemented the automatic feedbacks on the

RF frequency, beam orbit and the tunes until LHC Run 2

Algorithm 1 Test which asserts that only 30 optics can be
loaded to BFCLHC.𝑜𝑝𝑡𝑖𝑐𝑠_𝑠𝑒𝑡 ▷ Contains set of 30 optics𝑏𝑓 𝑐 ▷ Running instance of BFCLHC𝑒𝑥𝑡𝑟𝑎_𝑜𝑝𝑡𝑖𝑐𝑠 ▷ 1 extra optics𝑟𝑒𝑠 ▷ Test result

for 𝑜𝑝𝑡𝑖𝑐𝑠 in 𝑜𝑝𝑡𝑖𝑐𝑠_𝑠𝑒𝑡 do𝑏𝑓 𝑐.loadOptics(𝑜𝑝𝑡𝑖𝑐𝑠)
if Allowable time expired then𝑟𝑒𝑠 ← 𝐹𝑎𝑖𝑙

Exit
else if not 𝑏𝑓 𝑐.opticsLoadedSuccessfully() then𝑟𝑒𝑠 ← 𝐹𝑎𝑖𝑙

Exit
end if

end for𝑏𝑓 𝑐.loadOptics(𝑒𝑥𝑡𝑟𝑎_𝑜𝑝𝑡𝑖𝑐𝑠)
if 𝑏𝑓 𝑐.opticsLoadedSuccessfully() then𝑟𝑒𝑠 ← 𝐹𝑎𝑖𝑙
else𝑟𝑒𝑠 ← 𝑆𝑢𝑐𝑐𝑒𝑠𝑠
end if

in 2018. The renovation of the BBFS during LS2 saw the
upgrade of the hardware, software and operational sides of
the feedbacks. The experience gained when operating the
feedbacks in the past, was taken into consideration during
the renovation of the BBFS. Ultimately, the renovated BBFS
is a FESA-based application called the BFCLHC, which
includes all the required functionality of the BBFS, along
with the addition of new features. The three main upgrades
are: a) Introduction of FPs for the automatic changing of
settings during LHC operation; b) More efficient optics com-
putations and; c) a simpler and more user-friendly interface.
A hardware agnostic testing framework was also developed
by the LHC operations section to help with the development
of the BFCLHC.

REFERENCES
[1] European Organization for Nuclear Research, O. Bruning,

and European Council for Nuclear Research, LHC Design Re-
port, Volume I: The LHC Main Ring, en. CERN, 2004. http:
//books.google.com/books/about/LHC_Design_

Report_Volume_I.html?hl=&id=n-BmNQAACAAJ

[2] R. J. Steinhagen, “LHC beam stability and feedback Control-
Orbit and energy,” Ph.D. dissertation, RWTH Aachen U.,
Sep. 2007. http://cds.cern.ch/record/1054849

[3] L. K. Jensen et al., “Software architecture for the LHC Beam-
Based feedback system at CERN,” CERN, San Francisco,
USA, Tech. Rep. CERN-ACC-2013-0257, Nov. 2013. https:
//cds.cern.ch/record/1628552/files/CERN-ACC-

2013-0257.pdf

[4] P. Forck, D. Liakin, and P. Kowina, “Beam position moni-
tors,” in CERN Accelerator School: Beam Diagnostics, D.
Brandt, Ed., Dourdan, France: CERN, 2009, pp. 187–228.
https://cds.cern.ch/record/1213277/files/

p187.pdf

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

Feedback Control, Machine Tuning and Optimization

WEPV019

675

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

[5] M. Gasior and R. Jones, “High sensitivity tune measurement
by direct diode detection,” in Proceedings of 7th European
Workshop on Beam Diagnostics and Instrumentation for Par-
ticle Accelerators (DIPAC 2005), Lyon, France, 2005, p. 4.
https://cds.cern.ch/record/895142/files/ab-

2005-060.pdf

[6] S. Kostoglou, G. Arduini, L. Intelisano, Y. Papaphilippou,
and G. Sterbini, “Impact of the 50 hz harmonics on the beam
evolution of the large hadron collider,” Feb. 2020. arXiv:
2003.00140 [physics.acc-ph]. http://arxiv.org/
abs/2003.00140

[7] L. Grech et al., “An alternative processing algorithm for the
tune measurement system in the LHC,” in Proceedings of the
9th International Beam Instrumentation Conference (IBIC
2020), Virtual, 2020.

[8] M. Arruat et al., “Front-end software architecture,” in
ICALEPCS07, vol. 7, Knoxville, Tennessee, USA, 2007,
pp. 310–312. https : / / accelconf . web . cern . ch /
accelconf/ica07/PAPERS/WOPA04.PDF

[9] R. Murillo-Garcia, Q. King, and M. M. De Abril, “Control of
fast-pulsed power converters at CERN using a function gener-
ator controller,” CERN, Tech. Rep. CERN-ACC-2015-0128,
Oct. 2015. https://cds.cern.ch/record/2059133/
files/CERN-ACC-2015-0128.pdf

[10] R. Brun and F. Rademakers, “ROOT: An object oriented
data analysis framework,” Nucl. Instrum. Meth. A, vol. 389,
M. Werlen and D. Perret-Gallix, Eds., pp. 81–86, 1997. doi:
10.1016/S0168-9002(97)00048-X.

[11] Release 5.34/20 - 2014-08-13 | ROOT a data analysis frame-
work, https://root.cern.ch/content/release-
53420, Accessed: 2019-7-31. https://root.cern.ch/
content/release-53420

[12] J. Wenninger and R. Steinhagen, “LHC orbit feedback control
requirements,” CERN AB-OP, Tech. Rep., Mar. 2007.

[13] J. Wenninger, L. Grech, Ed., Personal communication,
CERN, Jun. 2018.

[14] R. Jones, BE-BI 2019: The year in review, BI Day 2019,
La Villa du Lac, Divonne-les-Bains, France, 2019. https:
//indico.cern.ch/event/857941/contributions/

3612395/attachments/1960206/3257519/BI_Group_

End_of_year_2019_-_compressed.pdf

[15] F. W. Hoguin, FESA quality assurance, 1st Develop-
ers@CERN Forum, CERN, Geneva, Switzerland, Sep. 2015.
https://cds.cern.ch/record/2056256

[16] D. Alves, K. Fuchsberger, S. Jackson, and J. Wenninger,
“Test-driven software upgrade of the LHC beam-based feed-
back systems,” in 2016 IEEE-NPSS Real Time Confer-
ence (RT), Padova, Italy: IEEE, Jun. 2016. https : / /
indico.cern. ch/event /390748/contributions /

1825184 / attachments / 1283146 / 1927869 / CRX _

PosterSession2_64.pdf

[17] C. Roderick and R. Billen, “The LSA database to drive the
accelerator settings,” Tech. Rep. CERN-ATS-2009-100, Nov.
2009. https://cds.cern.ch/record/1215575?ln=en

[18] L. Grech, D. Alves, S. Jackson, G. Valentino, and J. Wen-
ninger, “Feasibility of hardware acceleration in the LHC
orbit feedback controller,” en, in 17th International Confer-
ence on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS’19), New York, NY, USA, 05-11 Octo-
ber 2019, JACOW Publishing, Geneva, Switzerland, Aug.
2020, pp. 584–588. https://accelconf.web.cern.ch/
icalepcs2019/doi/JACoW-ICALEPCS2019-MOPHA151.
html

[19] S. Jackson, D. Alves, L. Di Giulio, K. Fuchsberger, B. Kolad,
and J. Pedersen, “Testing framework for the LHC beam-based
feedback system,” in Proceedings of the 15th International
Conference on Accelerator and Large Experimental Physics
Control Systems, L. Corvetti, K. Riches, and V. Schaa, Eds.,
Melbourne, Australia, Jan. 2016, pp. 140–144. https://
accelconf.web. cern.ch /ICALEPCS2015/papers /

mopgf024.pdf

[20] D. Merkel, “Docker: Lightweight linux containers for con-
sistent development and deployment,” Linux J., vol. 2014,
no. 239, p. 2, Mar. 2014. https://dl.acm.org/doi/10.
5555/2600239.2600241

[21] GitLab CI/CD, https://docs.gitlab.com/ee/ci/,
Accessed: 2021-8-31. https://docs.gitlab.com/ee/
ci/

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV019

WEPV019C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

676 Feedback Control, Machine Tuning and Optimization

