WEPV003

THE DYNAMIC MODELING AND THE CONTROL ARCHITECTURE OF THE NEW HIGH-DYNAMIC DOUBLE-CRYSTAL MONOCHROMATOR (HD-DCM-Lite) FOR SIRIUS/LNLS

G. S. de Albuquerque^{*}, A. V. Perna, J. L. Brito Neto, M. A. L. Moraes, M. S. Souza, M. S. Silva, R. R. Geraldes¹, LNLS/CNPEM, Campinas, Brazil ¹also at the CST Group, Eindhoven University of Technology (TUe), Eindhoven, The Netherlands

Control Architecture

Figure 3. BRG and PTC transfer functions for feedback (closed-loop) and feedback plus feedforward.

BRG_r to BRG_m Magnitude (abs) 10⁰ 10^{0} 10^{2} 10^{3} 10¹ 10^{4} PTC_r to PTC_m Magnitude (abs) 10⁰ • FB FB + FF 10⁰ 10^{2} 10^{3} 10¹ 10⁴ Frequency (Hz)

- Independent SISO systems (BRG, GAP, PTC, RLL)
- Second-order system approximation
- Robust feedback controllers via loop-shaping
 - Simple PID with practical "rules of thumb"
 - A few notches added for stability
- Feedforward in order to expand scanning frequency possibilities

WEPV003

Disturbance Models

- Ground vibrations (GND)
- Flow-Induced Vibrations (FIV)
- Electronic •
 - Sensors
 - Actuators •
 - Sub-divisional Errors (SDE) .

- ٠
- •
- Frequency dependent ۲

Figure 4. SDE Power Spectrum Density.

Figure 5. Cumulative power spectrum of control error in simulation for all disturbance sources.

Performance Predictions

Table 1. Control error RMS for different scan amplitude	es
θ_A and frequencies f between 1 Hz to 2.5 kHz	

θ_A [mrad]	f [Hz]	BRG_e [nrad]	GAP_e [nm]	PTC_e [nrad]	RLL_e [nrad]
60	0.3	470	12	11	21
40	0.4	450	12	11	21
40	0.9	430	12	9.6	21
20	0.9	460	12	11	21
20	3.0	780	12	13	21
7.0	2.4	1000	12	22	21
8.0	7.7	1600	12	24	22
2.0	15	1800	13	36	22
0.5	30	1300	13	30	22
0.2	54	1600	13	38	22
No SDE:		55	12	4.8	21
Spec:		150	300	10	90

Figure 7. Representative scan conditions.

- SDE is the main additional noise during scans, • specially on BRG loop
- Leading signal for CCG comes from BRG ٠ reference instead of sensor

nn

DD

min

ICALEPCS 2021

