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MIMOFB
When configured as a feedback, the MIMOFB imple-

ments a correction scheme based on a linear model that link 
sensors and actuators. This relationship is an approxima-
tion that is empirically calculated by measuring the pertur-
bation generated on the sensors by one actuator at a time. 
The result of this process is a matrix, formally a Response 
Matrix (RM). The product between the inverse of the re-
sponse matrix, usually inverted using the Singular Value 
Decomposition (SVD) algorithm, and the error vector re-
turns the values to subtract from actuators to minimize the 
distance between the sensors and the reference.

Regarding optimization, the MIMOFB implements only 
model-less optimization schemes. In this case the objective 
function F (1) is the sum of the normalized distances be-
tween N sensor values and corresponding references mul-
tiplied by the sensor weights.

� =  ∑ �� ∗ ௔௕�ሺ��−��ೝ೐೑ሻ��ౣ ax_೟ℎೝ೐ೞ−��ౣ i౤_೟ℎೝ೐ೞ��=0 (1)

The configuration of a MIMOFB device is stored in sev-
eral device properties.

 For each sensor the developer has to configure: • the sensors Tango attributes• the number of sensor readings per cycle• descriptive label• weight• minimum threshold value• maximum threshold value• dead-band• sensor update rate in ms• type of filtering (none, mean, median) when the num-
ber of readings per cycle is higher than one• Tango device allowed states• list of actuators affecting the sensors

For each actuator it is required to specify:• the actuator Tango attribute• descriptive label• minimum threshold value• maximum threshold value• scan range• RM kick; this value is used in response matrix calcu-
lation and as the initial step in optimization algorithms• maximum backlash (useful when working with mo-
tors)• dead-band• maximum difference between last read and set value

Abstract 
Online automatic performance optimization is a com-

mon practice in particle accelerators. Beside the attempts 
based on Machine Learning, which is effective especially 
on non-linear systems and images but are very complex to 
tune and manage, one of the most simple and robust algo-
rithms, the simplex Nelder Mead, is extensively used at 
Elettra to automatically optimize the synchrotron parame-
ters. It is currently applied to optimize the efficiency of the 
booster injector by tuning the pre-injector energy, the tra-
jectory and optics of the transfer lines, and the injection 
system of the storage ring. It has also been applied to max-
imize the intensity of the photon beam on a beamline by 
changing the electron beam position and angle inside the 
undulator. The optimization algorithm has been embedded 
in a Tango device that also implements generic and config-
urable multi-input multi-output feedback systems. This op-
timization tool is usually included in a high-level automa-
tion framework based on Behavior Trees [1] in charge of 
the whole process of machine preparation for the experi-
ments.

INTRODUCTION
Similarly to most of the modern light sources, the Elettra 

2-2.4GeV synchrotron relies on feedback systems to keep 
the beams stable and, more recently, on automatic optimi-
zation systems to help operators in maximizing the perfor-
mance.

Feedback and optimization systems look in some aspects 
very similar. They have both sensors, actuators and have in 
common the objective of minimizing the distance between 
sensors and a reference. In feedback systems the reference 
is a setpoint of a machine parameter that have to kept fixed 
no matter the noise or external perturbations affecting the 
accelerator. In optimization problems the reference is still 
present but usually set to an arbitrarily very high /very low 
value if the intention is to maximize / minimize the sensor 
value.

By the way, excluding the algorithmic part, the software 
internal components (acquisition, command and control) 
are the same.

In light sources programmable feedback and/or optimi-
zation tools are quite common. Some of them are imple-
mented as high-level applications [2,3] others are server 
applications [4].

At Elettra a programmable C++ Tango server, called 
MIMOFB (Multi Input Multi Output Feedback), has been 
developed to replace legacy applications implementing 
slow feedback systems and to implement automatic opti-
mization procedures. 
 ___________________________________________  
† email: giulio.gaio@elettra.eu

• RM kick settling time (msec.); this value changes pro-
portionally to RM kick amplitude
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• constant settling time in msec.• tango device allowed states.
  Thus, the repetition frequency of the algorithm 
depends only by the refresh rate and the settling time of 
the I/O. Acquiring sensors and setting actuators could be 
performed in series or parallel. When configured in series 
one iteration lasts the sum of all refresh and settling times. 
When configured in parallel, the repetition period is equal 
to the sum of the slowest sensor and actuator response. 
The repetition frequency can be tuned further by acting on 
a time factor that compress or expand all settling times.

Feedback Algorithm
The response matrix calculation is performed by the 

MIMOFB. At the end of the procedure the user can choose 
to load the new response matrix or just save it. In the re-
sponse matrix inversion, the SVD singular values can be 
weighted and weights can be saved. 
When the feedback is running, users can activate an adap-
tive procedure that improve the matching between the re-
sponse matrix and the real machine. Basically, after a given 
feedback iteration, one actuator at a time performs a kick. 
The corresponding perturbation is acquired by the sensors 
to update the corresponding part of the response matrix that 
will be afterwards inverted for the next feedback step.

A procedure assists the user to estimate what is the opti-
mal kick amplitude used for the response matrix calcula-
tion and at the start of the optimization procedures. The op-
timal kick amplitude is a tradeoff between a step that in-
creases the rms of the sensor readings by at least 50% and 
the minimum step that drive at least one of the sensors out 
of range. 

The closed loop algorithm is a proportional-integral-
derivative controller (PID). The user can switch between 
the PID default configuration and a predefined one that 
lowers 

the closed loop gain and guarantee a better feedback stabil-
ity. Users can enable the anti-windup, the dead-band con-
trol and the slew-rate control on the actuators.

Optimization Algorithms
At the moment there are four model-less optimization al-

gorithms available:• 1D scan, one parameter• 2D scan, two parameters• Simultaneous Perturbation Stochastic Approximation
(SPSA) [5], multi-parameter• Nelder Mead [6], multi-parameter.

In the near future many model free algorithms provided
by the NLOpt library [7] will be integrated in the server.

The optimization algorithm could run one shot or, by 
means of a programmable optimization scheduler (see 
Fig. 1), cycle between different combinations of optimiza-
tion algorithms and actuators. For NM and SPSA the user 
can limit the maximum number of iterations or seconds per 
optimization. During execution, if no improvement occurs 
within one third of the remaining time, the optimization 
stops. 

Monitoring and Recovery
The MIMOFB stops in fault state when sensor/actuator 

values and their statuses are out of allowed values for a 
number of consecutive cycles. Afterwards, the feed-
back/optimization can automatically restart once sensor 
and actuators are back in range.

When enabled, the processing automatically disables the 
sensors whose value remain constant for more than two 
samples or equal to zero.

Figure 1: Configuration panel of the MIMOFB.  The “Batch Programming” tab configures the optimization scheduler 
(example). CHV_PTBX.X are corrector magnets of a transfer-line. The optimization target is the booster accumulated 
current. The “I’m Feeling lucky” optimization mode couples randomly actuators and optimization algorithms.

If the sensor value is an average of more then one sample 
(mean/median), a threshold fixes the maximum number of 
outliers before marking the sensor invalid.
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Sensor and actuator data and error messages are stored 
into dedicated buffers (see Fig. 2). Similarly, the optimiza-
tion / feedback engine has a dedicated logging buffer for 
saving error and debugging messages.

Figure 2: MIMOFB main control panel with logging buff-
ers. 

Sequencers Integration
The MIMOFB can be configured to execute a sequence 

of instructions, based on sequencers [1], at the start and at 
the end of the correction / optimization process.

Each sensor reading can be preceded and followed by the 
execution of a sequencer. Similarly, a sequencer can be ex-
ecuted before and after the setting of an actuator. In all 
cases the correction/optimization process waits sequencers 
to complete their task before going on. If the sequencer will 
end its task in fault state then the MIMOFB itself will fail. 

The sequencers greatly expand the capabilities of the 
MIMOFB. A significant example is the alignment proce-
dure, based on MIMOFB, of an electron/laser beam based 
on intercepting fluorescent screens. In this case the acqui-
sition of the position of the beam on the screen has to be 
preceded by the insertion of the screen and followed by its 
extraction (to let the beam go to the next screen). This me-
chanical process is demanded to pre and post sensor se-
quencers that can be easily integrated without touching any 
internal logic of the MIMOFB. In another example a pre-
sensor sequencer selects the most reliable sensor between 
two by acting on the weights of the sensors.

OPTIMIZATIONS
At Elettra the MIMOFB has slowly replaced all legacy 

high-level applications used for machine tuning and beam 
stabilization. MIMOFB implements slow local and global 
orbit correction in the storage ring, tune feedback, RF path 
length feedback and booster-to-storage ring transfer-line 
orbit feedback. However, the most interesting applications 
of the MIMOFB concern the optimization that, until re-
cently, was performed manually by operators.

• resilient to external perturbations• able to restore the machine in case of any failure.
Basically, in all optimization schemes the Nelder-Mead

(NM) algorithm together with the programmable optimiza-
tion scheduler gets the best results. At Elettra the optimizer 
is used routinely for tuning ([description];[actuators];[al-
gorithm];[target function]):• pre-injector energy (see Fig. 3, num. 1); one actuator,

pre-injector HV power supply; algorithm scan-1D;
booster accumulated current• pre-injector to booster RF phase matching (see Fig. 3,
num. 2); one actuator, rf phase shifter; algorithm scan-
1D; booster accumulated current• booster to storage ring transfer line orbit (see Fig. 3,
num. 5); four actuators, corrector magnet power sup-
plies; algorithm Nelder-Mead; injection efficiency
(see Fig. 3)• storage ring injection system (Fig. 3, num. 6); four ac-
tuators, HV power supplies; algorithm Nelder-Mead;
injection efficiency.

The optimizer is also used for tuning during machine 
preparation or machine physics shifts:• pre-injector to booster transfer-line orbit (see Fig. 3,

num. 3); four actuators, corrector magnet power sup-
plies; algorithm Nelder-Mead; booster accumulated
current• pre-injector to booster transfer-line optics (see Fig. 3,
num. 4); two actuators, quadrupole magnet power sup-
plies; algorithm Nelder-Mead; booster accumulated
current• beamline photon flux (see Fig.3, num. 7); four actua-
tors, position/angle at source point (eight correctors);
algorithm Nelder Mead; beamline photodiode (see Fig.
4)

Figure 3: Elettra automatic optimized systems 

In Elettra the machine optimizations are one of the most 
critical steps in the automatic process that recovers the ma-
chine from a faulty state and gives back light to the users.

The optimization process has to be:• maintainable by the operators• aware of the machine state

CONCLUSION
The MIMOFB Tango server has become a key compo-

nent in the Elettra operations. Thanks to the fact that it is a 
server, it can be embedded in the high level software frame-
work based on sequencers, which carries out most of the 
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Figure 4: Optimization of the Elettra injection efficiency 
by changing the last correctors of the booster to storage-
ring transfer line  

Figure 5: Optimization of the photon beam flux on a beam-
line by changing position and angle of the electron beam 
inside the undulator. Eight correctors are involved in the 
local orbit optimization procedure [8]. The batch program-
ming engine runs the optimization for two cycles. In the 
second cycle the initial step amplitude was half the one of 
the first cycle. 

tasks that operators should perform manually to prepare the
machine and the electron beam for the beamline experiments.

Since the optimization procedures have to run without
any human supervision, we have preferred robust and model-
less algorithms with a minimum number of hyperparameters
to tune. For the same reason we chose to limit to four the
number of parameters involved contemporary in any unsu-
pervised optimization process.

Programming batches can execute several combinations
of optimization algorithms and different actuators to expand
the limits of using just one setup. The Nelder-Mead restart
technique [9] that can be easily implemented with batch
programming speed up the process of finding the best work-
ing point. The necessity for any online algorithm to have
a minimum signal for starting, can be mitigated with the
possibility to performing 1D-2D wide range scans for signal
recovering before running more sophisticated algorithms.

REFERENCES
[1] G. Gaio, P. Cinquegrana et al., “A framework for high level

machine automation based on Behavior Trees”, presented at
the 18th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCSC’21), Oct 2021, paper
WEAL02, this conference

[2] E. Piselli and A. Akroh, “New CERN Proton Synchrotron
Beam Optimization Tool”, in Proc. 16th Int. Conf. on Ac-
celerator and Large Experimental Physics Control Systems
(ICALEPCS’17), Barcelona, Spain, Oct. 2017, pp. 692-696.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

[3] S. Tomin, I. Agapov, et al., “Online optimization of European
XFEL with Ocelot”, in Proc. 16th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’17),
Barcelona, Spain, Oct. 2017, pp. 1038-1042. doi:10.18429/
JACoW-ICALEPCS2017-WEAPL07

[4] P. Bell, M. Sjöström, et al., “A General Multiple-Input
Multiple-Output Feedback Device in Tango for the MAX IV
Accelerators”, in Proc. 17th Int. Conf. on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’19),
New York, NY, USA, Oct. 2019, pp. 1084–1088. doi:10.
18429/JACoW-ICALEPCS2019-WEPHA012

[5] J. Nelder and R. Mead, “A Simplex Method for Function
Minimization”, The Computer Journal, vol. 7, Jan. 1965,
pp. 308-313. doi:10.1093/COMJNL/7.4.308, corrections
in doi:10.1093/comjnl/8.1.27

[6] J. C. Spall, “Multivariate stochastic approximation using a si-
multaneous perturbation gradient approximation”, IEEE Trans-
actions on Automatic Control, vol. 37, pp. 332-341, March
1992. doi:10.1109/9.119632

[7] NLopt, https://nlopt.readthedocs.io/
[8] C. J. Bocchetta, D. Bulfone, et al., “First operational results

with the ELETTRA fast local feedback system”, in Proc.
17th IEEE Particle Accelerator Conference (PAC’97), Van-
couver, Canada, May 1997, pp. 2356-2358. doi:10.1109/
PAC.1997.751207

[9] Q. H. Zhao, D. Urosević, et al., “A restarted and modified
simplex search for unconstrained optimization”, Computers
& Operations Research, vol. 36, 2009, pp. 3263-3271. doi:
10.1016/j.cor.2009.03.005

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV008

Feedback Control, Machine Tuning and Optimization

WEPV008

639

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


