
IMPLEMENTATION OF A VHDL APPLICATION FOR
INTERFACING ANYBUS CompactCom

S.Gabourin∗, S. Pavinato, A. Nordt, European Spallation Source, Lund, Sweden

Abstract
The European Spallation Source (ESS ERIC), based in

Lund (Sweden), will be in a few years the most powerful
neutron source in Europe with an average beam power of
5 MW. It will accelerate proton beam pulses to a Tungsten
wheel to generate neutrons by the spallation effect. For such
beam, the Machine Protection System (MPS) at ESS must
be fast and reliable, and for this reason a Fast Beam Inter-
lock System (FBIS) based on FPGAs is required. Some
protection functions monitoring slow values (like tempera-
ture, mechanical movements, magnetic fields) need however
less strict reaction times and are managed by PLCs.

The communications protocol established between PLCs
and FBIS is PROFINET fieldbus based. The Anybus Com-
pactCom allows an host to have connectivity to industrial
networks as PROFINET. In this context, FBIS represents
the host and the application code to interface the AnyBus
CompactCom has been fully developed in VHDL.

This paper describes an open source implementation to
interface a CompactCom M40 with an FPGA.

INTRODUCTION
The European Spallation Source (ESS), an accelerator

driven research facility located outside of Lund, Sweden, is
currently in its construction and early operation phase, and
aims to be the most powerful and bright neutron source in the
world by 2025. ESS is a long-pulse neutron source, and con-
sists of a 600 m long proton LINAC, a rotating helium-cooled
tungsten target, creating neutrons through the spallation pro-
cess and 22 different neutron beam ports, equipped with
neutron scattering research instruments. The unique time
structure of long neutron pulses (2.86 ms) at low frequency
(14 Hz) will significantly expand the possibilities for neutron
science to probe material structures and dynamics [1]. The
proton beam power of 125 MW per pulse (5 MW average)
will be unprecedented and its uncontrolled release can cause
serious damage of equipment within a few microseconds
only. To maximize operational efficiency of ESS, allowing
for very high beam availability with high reliability towards
the end-users, accidents shall be avoided and interruptions
of beam operation have to be minimized and be limited to
a short time. Finding an optimum balance between appro-
priate protection of equipment from damage and high beam
availability is the key principle on which the ESS Machine
Protection Strategy is being based on [2]. Implementing
and realizing the measures needed to provide the correct
level of protection in case of a complex facility like ESS,
requires a systematic approach, enabling seamless integra-
tion of the several 100 protection functions that span over
∗ stephane.gabourin@ess.eu

multiple systems. The entity performing the final logic on
whether beam operation is allowed or needs to be interrupted,
is called Beam Interlock System (BIS), and consists of four
PLC based interlock systems and the FPGA based Fast Beam
Interlock System (FBIS). The FBIS takes the ultimate deci-
sion on safe beam operation and is the only system that can
trigger a beam stop. It is designed to stop beam production
within 3 μs for the fastest failures at a safety integrity level
of SIL2 according to the IEC61508 standard. These require-
ments result from a hazard and risk analysis being performed
for all systems at ESS. The complexity of the ESS machine
(multiple beam destinations, beam modes, etc) requires not
only transferring binary data from the PLC based interlock
systems to the FPGA based Fast Beam Interlock System
(Beam Permit OK/NOK), but also to transfer information
on e.g. machine configuration, device location, etc.. For
that purpose, a so-called datalink has been implemented.
It transmits data from the PLCs via PROFINET towards
the FPGAs, using an intermediate commercial module, a
CompactCom, which communicates via SPI with an ESS
in-house developed firmware driver. This paper describes
the implementation of this link that was particularly chal-
lenging, as the CompactCom is designed to communicate
with software entities like microprocessors, but not with
FPGA firmware written in VHDL.

ANYBUS CompactCom OVERVIEW
The Anybus CompactCom module is a flexible and cheap

way to connect to a PROFINET network. It is already well
known and used also in the domain of Machine Protection
in laboratories like CERN. In order to understand more in
details the following section a brief overview of Anybus
CompactCom M40 is done.

As written in the datasheet [3], the Anybus Compact-
Com M40 for PROFINET is a complete communication
module which enables your products to communicate on a
PROFINET-RT or IRT network. The module supports fast
communication speeds, making it suitable also for high-end
industrial devices.

Anybus CompactCom provides different application in-
terfaces to the host: parallel, SPI, with a baudrate up to
20 MHz, shift register interface and UART. At ESS the SPI
interface has been chosen as it is faster than UART and shift
register interfaces. Also, even if it is slower than the parallel
interface, it is less IO consuming. Then the communication
is master/slave mode based, where the master, the host, is
the FPGA and the slave is the Anybus CompactCom.

Figure 1, shows the interfaces available between an host
and the CompactCom with details on its internal structure.
In order to interface the PROFINET Network the signals

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV041

Functional Safety Systems for Machine Protection, Personnel Safety

WEPV041

755

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



sent by the host have to pass through Anybus CPU, the
Communication Controller and finally the Physical Interface.
The data flow goes also in the opposite direction.

Figure 1: Host - CompactCom interface [4].

For the host the Anybus CompactCom is a grey box, where
its behavior can be represented by the Anybus State machine,
Fig. 2. This state machine, a Moore FSM, is a fundamental
part of the Anybus CompactCom 40 that reflects the status
of the module and the network. The host application is not
required to keep track of all state transitions, however it is
expected to perform certain tasks in each state.

Figure 2: Anybus State Machine [4].

Lastly the host application has to be aware of the address-
ing scheme of the Anybus module. The software interface
is object structured. According to the software documenta-
tion [4], related information and services are grouped into
entities called ‘Objects’. Each object can hold subentities
called ‘Instances’, which in turn may contain a number of
fields called ‘Attributes’. Attributes typically represent in-
formation or settings associated with the Object. There are
nine different types of objects and two are mandatory to be

implemented in the host application: the Application Data
Object and the Application Object.

Object messaging, between host application and Anybus
module, involves two types of messages; commands and
responses. On the message level, there is no master-slave
relationship between the host application and the Anybus
CompactCom module; both parts may issue commands, and
are required to respond. Commands and responses are al-
ways associated with an instance within the Anybus object
model [4].

VHDL IMPLEMENTATION
This section describes the host application code. For ma-

chine protection criticality reason, the code is written purely
in VHDL and so far has been tested in two different hosts:
a Xilinx Kintex UltraScale Development Kit (as shown in
Fig. 3), mounting a Xilinx XCKU040 FPGA, and a custom
board SCS_1600 designed by IOxOS mounting an Zynq®
UltraScale+™ MPSoC XCZU7EG-FFVF1517 (as shown in
Fig. 4).

Figure 3: Anybus mounted on the Xilinx XCKU040 Devel-
opment Kit via the FMC connector.

Figure 4: Highlighted the Anybus mounted on the MC. On
the left and right of the crate the two cards where the Zynq®
UltraScale+™ MPSoC XCZU7EG-FFVF1517 are mounted.

As written in the previous section the application has been
design to support the SPI interface. The SPI frames can have
two different sizes depending on if the Anybus is or not in
Setup or Network Init state. To manage this, two impure
functions to build MOSI frame have been written. So far
only the mandatory host objects and some of their instances

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV041

WEPV041C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

756 Functional Safety Systems for Machine Protection, Personnel Safety



and attributes are handled in the application. They have
been defined as constants used to fill the SPI frames when
requested.

Then two main state machines have been designed:

• the first state machine handles detection, initialization
and starting of the Anybus CompactCom module

• the second state machine (named SPI FSM) is the one
tracing the anybus state machine illustrated in Fig. 2,
keeping communicating with the Anybus CompactCom
through command and response messages.

As mentioned above the FSM in Fig. 2 is mimicked. In
each of its state a subset of the SPI FSM handles commu-
nication until the Anybus reaches the Process Active state
in which the system becomes fully operational. The Fig. 5
shows a simplified view of the SPI FSM subset used in Pro-
cess Active. This cyclic communication was needed to:

• keep the Write Process Data updated since this data
is buffered by the Anybus CompactCom, and may be
sent to the network after a state shift, as recommended
in [4].

• catch the responses received by the Anybus Compact-
Com and according to the object, instance and attribute
read, build the proper following command. In the case
the firmware cannot catch the response an object error
is sent back.

• send the commands. Depending on the type of com-
mands one or more SPI frames have to be delivered to
the Anybus CompactCom.

Figure 5: Detail of a status implementation in the FSM
written.

With the SPI working at 20MHz and with a Process Data
field of 46 bytes, the SPI frames are around 20us long, but

in the process of the state machine, the data refresh rate is
1.3 ms.

FBIS is a redundant system with two channels reading
data from the Anybus CompactCom. According to the SPI
protocol, the Anybus CompactCom is the slave that has to
be accessed by two masters SCS_1600. Currently one of the
two masters engages the Anybus CompactCom, and informs
the second master that stays in idle state. The second master
gets then the decoded frame of the Anybus CompactCom
from the first master. The link between the two masters is
done via backplane and is based on a UART protocol. If
the first master can’t engage the module, the second master
takes over, re-initializing the module and trying to reach the
process active state. In case the second master fails also, the
first master tries again and so on.

CURRENT STATE
The firmware has been generated using Xilinx Vivado

2018.3. As mentioned in the previous section so far it has
been hardware validated in two different Xilinx device fami-
lies. The maximum clock frequency tested was 250 MHz. In
Table 1 a device utilization metrics for a Xilinx XCKU040
FPGA is reported.

Table 1: Xilinx XCKU040 Utilization Metrics

LUT LUTRAM BRAM DSP48 Max. Freq.
2170 21 0 0 250 MHz

Currently at ESS is in the first phase commissioning of
part of the normal conducting linac. FBIS interfaces three
PLC systems with a PROFINET. A more detailed descrip-
tion of one of this system is here [5], based on PROFINET
real-time fieldbus communications protocol and Anybus
CompactCom M40 module.

As mentioned above, data decoded from one Anybus Com-
pactCom has to be read by two different masters. Actually
just one master engages the module instead of the second
master reads decoded data from the first master.

In Fig. 6, two OPIs providing details on the status of
the FSMs implemented in the two redundant masters. The
OPI on the left provides details about the master that has
engaged the Anybus CompactCom. The master has properly
detected and identified the Anybus CompactCom module
(green leds) and the module is in “Process Active” state (blue
led). The master also provides module data to the UART
link on the backplane. Instead of in the OPI on the right, the
master doesn’t read information about the module, and its
logic managing the SPI communication is in idle state (blue
sys_reset led). It reads information of the first master from
the UART (UART alive led).

FURTHER IMPROVEMENTS
So far only a limited number of objects are caught in

the code. The ones implemented were chosen empirically,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV041

Functional Safety Systems for Machine Protection, Personnel Safety

WEPV041

757

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 6: OPIs about the status in the two different masters.
On the left the master that has engaged the Anybus Com-
pactCom. On the right the master reading decoded data via
UART.

looking at the SPI commands issued by the Anybus Com-
pactCom. In case the module sends a command requesting
an answer that is not foreseen in the host, this can lead to the
Anybus state machine getting trapped in the Network Init or
Wait Process state.

Now in order to overcome this, the module is reset and
re-initialized. Future development will handle all possible
commands and provide proper responses.

Both masters communicate through UART to arbitrate
which one interfaces the module. Now it’s under inves-
tigation the opportunity to exploit the backplane ethernet
communication in order to replace the UART link.

The communication with the Anybus CompactCom could
be managed by both master in parallel. As there is only 1
slave, the CS is whatever always in use (tied to 0) and the
arbitration just has to be managed between the masters, out
of the SPI protocol. However the module requests some
specificity in the SPI frames that makes the dual master
implementation delicate:

• a bit has to be toggled between 2 messages (com-
mand/response) except in some circumstances like er-
rors. If it is not properly toggled, the module will not
interpret messages properly.

• responses are not requested to come in the same order
than commands were sent, each master has to interpret
responses to check it is the one of its own command.

• some commands or responses take more than 1 SPI
frame in case the Process Data field is not large enough.
This adds complexity in managing the communication,
especially in VHDL

CONCLUSION
An host application, written in VHDL, to interface the

Anybus CompactCom has been presented.
It is integrated in the whole FBIS logic. FBIS is currently

working during the first phase of the normal conducting linac
for which the beam commissioning is about to start.

For the next commissioning phases we are planning to
make some improvements in the code in order to facilitate
the module starting, the reading during operation by our
redundant system, but also to get more diagnostics from the
module itself or PROFINET, and potentially send data back
to PLCs.

REFERENCES
[1] R. Garoby et al., The European Spallation Source Design 2018

Phys. Scr. 93 (2018) 014001, doi:10.1088/1402-4896/
aa9bff.

[2] T. Friedrich, C. Hilbes, and A. Nordt, “Systems of systems
engineering for particle accelerator based research facilities:
A case study on engineering machine protection”, in 2017 An-
nual IEEE International Systems Conference (SysCon), Mon-
treal, QC, Canada, April 2017. doi:10.1109/SYSCON.2017.
7934806

[3] HMS Industrial Networks AB, Anybus CompactCom M40
Module-PROFINET-IRT.

[4] HMS Industrial Networks AB, Anybus® CompactCom™ 40,
Software Design Guide .

[5] D. Sánchez-Valdepeñas, M. Carroll, A. Nordt, and M. Zaera-
Sanz, “Implementation of the PLC based Machine Protection
System for Magnets at ESS”, in Proc. ICALEPCS’19, New
York, NY, USA, Oct. 2019, pp. 554–557. doi:10.18429/
JACoW-ICALEPCS2019-MOPHA139

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV041

WEPV041C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

758 Functional Safety Systems for Machine Protection, Personnel Safety


