
WEPV016 THE AUTOMATIC LHC COLLIMATOR BEAM-BASED
ALIGNMENT SOFTWARE PACKAGE

G. Azzopardi*, B. Salvachua Ferrando, CERN, Geneva, Switzerland,
G. Valentino, University of Malta1 2 3 4

5 6

● Collimation system protects LHC.

● 100+ collimators, each made of 2 jaws
inside a vacuum tank.

● Alignment campaigns required to set-up
the collimation hierarchy.

● 30% of collimators have embedded Beam
Position Monitoring (BPM) pick-up
buttons.

○ BPMs directly measure the beam
orbit at the collimator.

● All collimators have Beam Loss
Monitoring (BLM) devices installed
downstream, outside the beam vacuum.

○ BLMs detect losses when halo
particles impact the jaws. A spike in
the losses indicates the reference
halo was touched.

Beam-based Alignment (BBA) with BLMsIntroduction

Start

Select Beam b
(Beam 1, Beam 2)

Select Plane p
(Horizontal,

Vertical, Skew)

collimatorsb,p
stopped
moving?

Re-align TCPb,p

Left & Right once

 Align
collimatorb,p,iAll collimators

aligned?

Yes

No

No

All planes
aligned?

No

Both beams
aligned?

Stop

YesAlign
TCPb,p

Start parallel
movement of
collimatorsb,p

No

Yes

Yes

● Reference collimator aligned with collimator to create reference halo.

● The collimator jaws are moved towards the beam in steps of 5-20 μm whilst monitoring
the BLM signal recorded in the collimator’s respective BLM.

● The BBA allows to infer the local orbit position and the relative opening w.r.t. the
primary collimator, to establish the collimation hierarchy.

● Collimators from
the 2 beams can
be aligned in
parallel.

● Cross-talk must be
considered, i.e.
when losses
generated by a
collimator are
detected by
multiple BLMs
around the LHC.

 Align
collimator

Select Threshold

& Align Both jaws

Alignment
spike?

Select Threshold

& Align jaw 2

Alignment
spike?

Select Threshold

& Align jaw 1

Alignment
spike?

num_spikes = 0

num_spikes ++

num_spikes

== 2?

Yes

No

Yes

Yes

Yes No

No

No

Aligned
Alignment campaign

● 3-tier structure (see Figure).

● The hardware is abstracted and
controlled through FESA (Front-End
Software Architecture).

● The control system communicates
with FESA through devices.

○ FESA devices are typically
abstractions of the hardware,
grouped into a FESA class.

● The Java Swing GUI applications
interact with the FESA class through
the available Java API.

Software Architecture Multi-threadingImplementation

● The fully-automatic alignment is
implemented in a dedicated FESA class -
CollAlignSupervisor.

● It relies on the automation of 3 main
components:

○ Collimator selection for parallel
alignment avoiding cross-talk.

○ BLM threshold selection to stop
collimators moving towards the
beam.

○ Spike classification using supervised
machine learning to classify
between alignment spikes and
spurious spikes.

● These 3 components are developed as
individual modules, independently
available for any improvements.

● Only 2 collimators can be aligned in
parallel, 1 per beam (shared reference
and cross-talk).

● The FESA class is assigned 2 devices, to
run 2 instances of the software in
parallel, i.e. 2 threads.

● Each thread communicates:

○ The beam/plane being aligned.

○ The reference collimator status,
i.e.: moving/waiting status.

○ The current collimator ongoing
alignment, for cross-talk purposes.

○ The global wait status, i.e. if any
thread is waiting for an action from
the other thread.

SET

FESA class

 Setting Property

 Acquisition Property
GET Java

Display

Button

 Configuration Property

GET

SET

Hardware
device 1

Hardware
device 2

GUI Application Communication

FESA Class Property States Definition

Auto status -1, 0, 1 Alignment: (error, paused/stopped, ongoing)

Align status -3, -2, -1, 0, 1, 2 Parallel: (ongoing, done), Ignore, Collimator alignment: start, done,
done + saved

Parallel status -1, 0, 1, 2, 3, 4, 5 Deadlock, Ignore, Wait: (crosstalk, parallel, pause, TCP alignment,
change collimator)

Parallel message - Any message to display in GUI

TCP status -4, -3, -2, -1, 0, 1 Before collimator: (not aligned, aligned), Aligned before parallel,
Ignore, Aligning: (before, after coll)

Collimator status - Name of collimator ongoing alignment

Jaw status -1, 0, 1, 2 Ignore, Aligning: (first jaw, second jaw, both jaws)

Spike class -2, -1, 0, 1 Ignore, Error, No spike, Spike

● The software was designed to:

○ Be autonomous and efficient.

○ Independently “make decisions”
in real-time based on the status.

○ Imitate users as much as
possible, using “smart”
features.

○ Ensure the correct alignment.

● The “smart” features include:

○ Equal priority for collimators
from the two beams.

○ Limit the overall waiting time.

○ Reacting to user interrupts.

Available Features Alignment OutlookGUI Usability

● New options introduced:

○ Subsets of collimators in the
list can be further grouped for
alignments.

○ Collimators can be manually
removed from the list during
the alignment and re-added
at a later stage.

○ Pre-set collimator subsets for
alignments available.

○ Closing the application is an
automatic stop if any
alignment is ongoing.

● New alignment configurations
accessible and feasible:

○ Angular alignments for tighter
collimator settings.

○ Any combinations of
collimators can be aligned
efficiently with minimal effort.

○ Subsets of collimators can be
aligned more frequently
during operation.

○ Dedicated collimator
configurations e.g. ion beams
no longer bound to identical
setups as with protons.

● Collimation system protects LHC.

● 100+ collimators, each made of 2 jaws
inside a vacuum tank.

● Alignment campaigns required to set-up
the collimation hierarchy.

● 30% of collimators have embedded Beam
Position Monitoring (BPM) pick-up
buttons.

○ BPMs directly measure the beam
orbit at the collimator.

● All collimators have Beam Loss
Monitoring (BLM) devices installed
downstream, outside the beam vacuum.

○ BLMs detect losses when halo
particles impact the jaws. A spike in
the losses indicates the reference
halo was touched.

Beam-based Alignment (BBA) with BLMsIntroduction

Start

Select Beam b
(Beam 1, Beam 2)

Select Plane p
(Horizontal,

Vertical, Skew)

collimatorsb,p
stopped
moving?

Re-align TCPb,p

Left & Right once

 Align
collimatorb,p,iAll collimators

aligned?

Yes

No

No

All planes
aligned?

No

Both beams
aligned?

Stop

YesAlign
TCPb,p

Start parallel
movement of
collimatorsb,p

No

Yes

Yes

● Reference collimator aligned with collimator to create reference halo.

● The collimator jaws are moved towards the beam in steps of 5-20 μm whilst monitoring
the BLM signal recorded in the collimator’s respective BLM.

● The BBA allows to infer the local orbit position and the relative opening w.r.t. the
primary collimator, to establish the collimation hierarchy.

● Collimators from
the 2 beams can
be aligned in
parallel.

● Cross-talk must be
considered, i.e.
when losses
generated by a
collimator are
detected by
multiple BLMs
around the LHC.

 Align
collimator

Select Threshold

& Align Both jaws

Alignment
spike?

Select Threshold

& Align jaw 2

Alignment
spike?

Select Threshold

& Align jaw 1

Alignment
spike?

num_spikes = 0

num_spikes ++

num_spikes

== 2?

Yes

No

Yes

Yes

Yes No

No

No

Aligned
Alignment campaign

● 3-tier structure (see Figure).

● The hardware is abstracted and
controlled through FESA (Front-End
Software Architecture).

● The control system communicates
with FESA through devices.

○ FESA devices are typically
abstractions of the hardware,
grouped into a FESA class.

● The Java Swing GUI applications
interact with the FESA class through
the available Java API.

Software Architecture Multi-threadingImplementation

● The fully-automatic alignment is
implemented in a dedicated FESA class -
CollAlignSupervisor.

● It relies on the automation of 3 main
components:

○ Collimator selection for parallel
alignment avoiding cross-talk.

○ BLM threshold selection to stop
collimators moving towards the
beam.

○ Spike classification using supervised
machine learning to classify
between alignment spikes and
spurious spikes.

● These 3 components are developed as
individual modules, independently
available for any improvements.

● Only 2 collimators can be aligned in
parallel, 1 per beam (shared reference
and cross-talk).

● The FESA class is assigned 2 devices, to
run 2 instances of the software in
parallel, i.e. 2 threads.

● Each thread communicates:

○ The beam/plane being aligned.

○ The reference collimator status,
i.e.: moving/waiting status.

○ The current collimator ongoing
alignment, for cross-talk purposes.

○ The global wait status, i.e. if any
thread is waiting for an action from
the other thread.

SET

FESA class

 Setting Property

 Acquisition Property
GET Java

Display

Button

 Configuration Property

GET

SET

Hardware
device 1

Hardware
device 2

GUI Application Communication

FESA Class Property States Definition

Auto status -1, 0, 1 Alignment: (error, paused/stopped, ongoing)

Align status -3, -2, -1, 0, 1, 2 Parallel: (ongoing, done), Ignore, Collimator alignment: start, done,
done + saved

Parallel status -1, 0, 1, 2, 3, 4, 5 Deadlock, Ignore, Wait: (crosstalk, parallel, pause, TCP alignment,
change collimator)

Parallel message - Any message to display in GUI

TCP status -4, -3, -2, -1, 0, 1 Before collimator: (not aligned, aligned), Aligned before parallel,
Ignore, Aligning: (before, after coll)

Collimator status - Name of collimator ongoing alignment

Jaw status -1, 0, 1, 2 Ignore, Aligning: (first jaw, second jaw, both jaws)

Spike class -2, -1, 0, 1 Ignore, Error, No spike, Spike

● The software was designed to:

○ Be autonomous and efficient.

○ Independently “make decisions”
in real-time based on the status.

○ Imitate users as much as
possible, using “smart”
features.

○ Ensure the correct alignment.

● The “smart” features include:

○ Equal priority for collimators
from the two beams.

○ Limit the overall waiting time.

○ Reacting to user interrupts.

Available Features Alignment OutlookGUI Usability

● New options introduced:

○ Subsets of collimators in the
list can be further grouped for
alignments.

○ Collimators can be manually
removed from the list during
the alignment and re-added
at a later stage.

○ Pre-set collimator subsets for
alignments available.

○ Closing the application is an
automatic stop if any
alignment is ongoing.

● New alignment configurations
accessible and feasible:

○ Angular alignments for tighter
collimator settings.

○ Any combinations of
collimators can be aligned
efficiently with minimal effort.

○ Subsets of collimators can be
aligned more frequently
during operation.

○ Dedicated collimator
configurations e.g. ion beams
no longer bound to identical
setups as with protons.

