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● Collimation system protects LHC.

● 100+ collimators, each made of 2 jaws
inside a vacuum tank.

● Alignment campaigns required to set-up
the collimation hierarchy.

● 30% of collimators have embedded Beam
Position Monitoring (BPM) pick-up
buttons.

○ BPMs directly measure the beam
orbit at the collimator.

● All collimators have Beam Loss
Monitoring (BLM) devices installed
downstream, outside the beam vacuum.

○ BLMs detect losses when halo
particles impact the jaws. A spike in
the losses indicates the reference
halo was touched.

Beam-based Alignment (BBA) with BLMsIntroduction

Start

Select Beam b 
(Beam 1, Beam 2)

Select Plane p 
(Horizontal, 

Vertical, Skew)

collimatorsb,p 
stopped 
moving?

Re-align TCPb,p

Left & Right once

      Align     
collimatorb,p,iAll collimators 

aligned?

Yes

No

No

All planes 
aligned?

No

Both beams 
aligned?

Stop

YesAlign     
TCPb,p

Start parallel 
movement of 
collimatorsb,p

No

Yes

Yes

● Reference collimator aligned with collimator to create reference halo.

● The collimator jaws are moved towards the beam in steps of 5-20 μm whilst monitoring
the BLM signal recorded in the collimator’s respective BLM.

● The BBA allows to infer the local orbit position and the relative opening w.r.t. the
primary collimator, to establish the collimation hierarchy.

● Collimators from 
the 2 beams can 
be aligned in 
parallel.

● Cross-talk must be 
considered, i.e. 
when losses 
generated by a 
collimator are 
detected by 
multiple BLMs 
around the LHC. 
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● 3-tier structure (see Figure).

● The hardware is abstracted and
controlled through FESA (Front-End
Software Architecture).

● The control system communicates
with FESA through devices.

○ FESA devices are typically
abstractions of the hardware,
grouped into a FESA class.

● The Java Swing GUI applications
interact with the FESA class through
the available Java API.

Software Architecture Multi-threadingImplementation

● The fully-automatic alignment is
implemented in a dedicated FESA class -
CollAlignSupervisor.

● It relies on the automation of 3 main
components:

○ Collimator selection for parallel
alignment avoiding cross-talk.

○ BLM threshold selection to stop
collimators moving towards the
beam.

○ Spike classification using supervised
machine learning to classify
between alignment spikes and
spurious spikes.

● These 3 components are developed as
individual modules, independently
available for any improvements.

● Only 2 collimators can be aligned in
parallel, 1 per beam (shared reference
and cross-talk).

● The FESA class is assigned 2 devices, to
run 2 instances of the software in
parallel, i.e. 2 threads.

● Each thread communicates:

○ The beam/plane being aligned.

○ The reference collimator status,
i.e.: moving/waiting status.

○ The current collimator ongoing
alignment, for cross-talk purposes.

○ The global wait status, i.e. if any
thread is waiting for an action from
the other thread.
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GUI Application Communication

FESA Class Property States Definition

Auto status -1, 0, 1 Alignment: (error, paused/stopped, ongoing)

Align status -3, -2, -1, 0, 1, 2 Parallel: (ongoing, done), Ignore, Collimator alignment: start, done, 
done + saved

Parallel status -1, 0, 1, 2, 3, 4, 5 Deadlock, Ignore, Wait: (crosstalk, parallel, pause, TCP alignment, 
change collimator)

Parallel message - Any message to display in GUI

TCP status -4, -3, -2, -1, 0, 1 Before collimator: (not aligned, aligned), Aligned before parallel, 
Ignore, Aligning: (before, after coll)

Collimator status - Name of collimator ongoing alignment

Jaw status -1, 0, 1, 2 Ignore, Aligning: (first jaw, second jaw, both jaws)

Spike class -2, -1, 0, 1 Ignore, Error, No spike, Spike

● The software was designed to:

○ Be autonomous and efficient.

○ Independently “make decisions”
in real-time based on the status.

○ Imitate users as much as
possible, using “smart”
features.

○ Ensure the correct alignment.

● The “smart” features include:

○ Equal priority for collimators
from the two beams.

○ Limit the overall waiting time.

○ Reacting to user interrupts.

Available Features Alignment OutlookGUI Usability

● New options introduced:

○ Subsets of collimators in the
list can be further grouped for
alignments.

○ Collimators can be manually
removed from the list during
the alignment and re-added
at a later stage.

○ Pre-set collimator subsets for
alignments available.

○ Closing the application is an
automatic stop if any
alignment is ongoing.

● New alignment configurations
accessible and feasible:

○ Angular alignments for tighter
collimator settings.

○ Any combinations of
collimators can be aligned
efficiently with minimal effort.

○ Subsets of collimators can be
aligned more frequently
during operation.

○ Dedicated collimator
configurations e.g. ion beams
no longer bound to identical
setups as with protons.
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● 3-tier structure (see Figure).

● The hardware is abstracted and
controlled through FESA (Front-End
Software Architecture).

● The control system communicates
with FESA through devices.

○ FESA devices are typically
abstractions of the hardware,
grouped into a FESA class.

● The Java Swing GUI applications
interact with the FESA class through
the available Java API.

Software Architecture Multi-threadingImplementation

● The fully-automatic alignment is
implemented in a dedicated FESA class -
CollAlignSupervisor.

● It relies on the automation of 3 main
components:

○ Collimator selection for parallel
alignment avoiding cross-talk.

○ BLM threshold selection to stop
collimators moving towards the
beam.

○ Spike classification using supervised
machine learning to classify
between alignment spikes and
spurious spikes.

● These 3 components are developed as
individual modules, independently
available for any improvements.

● Only 2 collimators can be aligned in
parallel, 1 per beam (shared reference
and cross-talk).

● The FESA class is assigned 2 devices, to
run 2 instances of the software in
parallel, i.e. 2 threads.

● Each thread communicates:

○ The beam/plane being aligned.

○ The reference collimator status,
i.e.: moving/waiting status.

○ The current collimator ongoing
alignment, for cross-talk purposes.

○ The global wait status, i.e. if any
thread is waiting for an action from
the other thread.
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GUI Application Communication

FESA Class Property States Definition

Auto status -1, 0, 1 Alignment: (error, paused/stopped, ongoing)

Align status -3, -2, -1, 0, 1, 2 Parallel: (ongoing, done), Ignore, Collimator alignment: start, done, 
done + saved

Parallel status -1, 0, 1, 2, 3, 4, 5 Deadlock, Ignore, Wait: (crosstalk, parallel, pause, TCP alignment, 
change collimator)

Parallel message - Any message to display in GUI

TCP status -4, -3, -2, -1, 0, 1 Before collimator: (not aligned, aligned), Aligned before parallel, 
Ignore, Aligning: (before, after coll)

Collimator status - Name of collimator ongoing alignment

Jaw status -1, 0, 1, 2 Ignore, Aligning: (first jaw, second jaw, both jaws)

Spike class -2, -1, 0, 1 Ignore, Error, No spike, Spike
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