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Abstract 
The Linac4 source is a 2MHz, RF driven, H- ion source, 

using caesium injection to enhance H- production and 
lower the electron to H- ratio. The source operates with 
800µs long pulses at 1.2 second intervals. The stability of 
the beam intensity from the source requires adjustment of 
parameters like RF power used for plasma heating. 

The Linac4 Source Autopilot improves the stability and 
uptime of the source, by using high-level automation to 
monitor and control Device parameters of the source, in a 
time range of minutes to days. 

This paper describes the Autopilot Framework, which 
incorporates standard CERN accelerator Controls infra-
structure, and enables users to add domain specific code for 
their needs. User code typically runs continuously, adapt-
ing Device settings based on acquisitions. Typical use 
cases are slow feedback systems and procedure automation 
(e.g. resetting equipment). 

The novelty of the Autopilot is the successful integration 
of the Controls software based predominantly on Java tech-
nologies, with domain specific user code written in Python. 
This allows users to leverage a robust Controls infrastruc-
ture, with minimal effort, using the agility of the Python 
ecosystem. 

INTRODUCTION 
The CERN Linac4 ion source is a 2MHz RF driven H- 

ion source, using caesium injection to enhance H- produc-
tion and lower the electron to H- ratio. The source operates 
for Linac4 with 800µs long pulses at 1.2 second intervals. 

The stability of the H- beam intensity from the source 
over the period of minutes to days requires adjustment of 
parameters like the RF power used for plasma heating. 
Controlling the source on this timescale is the objective of 
the Autopilot. It is not conceived to work from pulse to 
pulse, or within a pulse, which would require dedicated 
systems at the front-end computer level. 

The Autopilot Framework was developed in 2019 and 
used successfully to automatically tune the source during 
the test runs for Linac4. It is currently operating 24/7 help-
ing the operations team to run the linear accelerator. An-
other instance has been successfully deployed in the CERN 
ion linac, Linac3. It replaces a highly specific version de-
veloped in 2017 [1], which lacked flexibility. 

FRAMEWORK 
The Autopilot Framework, henceforth referred to as the 

framework, is a set of services and tools (see Fig. 1.) that 
allow the users to deploy and execute the algorithmic tasks 
in a self-service manner, where the framework provides the 
necessary tooling and infrastructure. Typical use cases are 

slow feedback systems and automated procedures (like re-
setting and restarting equipment that has stopped due to a 
fault state). 

Figure1: Schematic diagram of the Autopilot Framework. 
Blue boxes signify the Autopilot framework components. 

The framework allows the users to subscribe to the Con-
trol parameters of their choice, process the received values, 
and publish the output as properties of Virtual Devices, i.e. 
Control Devices that are implemented exclusively in soft-
ware, with no hardware component. Those Virtual Devices 
can in turn be used like any other Control Device, in par-
ticular they can provide inputs to the user-supplied regula-
tion algorithms (subsequently referred to as actors) that in-
teract with the Linac4 H- ion source. 

A particularity of the framework is that although it is 
based on the accelerator Controls software stack, that is 
predominantly developed in Java, it allows the user code to 
be written in Python. Another characteristic of the frame-
work is that it leverages the well-established services and 
components that form the accelerator Controls, in particu-
lar the Controls Configuration Service (CCS) [2], Controls 
Middleware (CMW) [3], Role-Based Access System 
(RBAC) [4], the Unified Controls Acquisition and Pro-
cessing (UCAP) framework [5], LSA (Accelerator Settings 
Management) [6], LASER (Accelerator Alarms Service) 
[7], and NXCALS (Accelerator Logging Service) [8], thus 
reducing the need for developing custom components. 

At the core of the framework lies a UCAP node that sub-
scribes to physical and virtual Devices according to the rec-
ipes provided by the users. The recipes also contain the 
triggering conditions. When those conditions occur, the 
events containing the accumulated data are constructed and 
forwarded to the user-provided transformation routines, 
known as “Monitors”. The Monitors calculate the output 
values and give them back to UCAP, for publishing as vir-
tual Device Properties through controls middleware. 

Along with the UCAP recipes, and the Monitors, the 
Flask server also manages the user-provided control tasks 
called “Actors”. These are basically Python scripts whose 
job is to act upon the updates received from the Monitors 
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and perform the necessary actions to keep the parameters 
of the Linac4 source within the requested limits. The ben-
efit of the Actors using Monitors, is that the UCAP system 
takes care of synchronizing multiple data inputs, allowing 
the Actor to receive all required data in a single subscrip-
tion. 

Server 
The server is a REST service powered by the Flask mi-

cro-framework combined with Gunicorn as HTTP Server. 
The REST communication is hidden behind a simple web 
interface, which serves as a bridge between the user and 
the framework itself. The service was built with the use of 
Acc-Py, a CERN Accelerator Controls Python distribution. 

The web interface consists of three subpages, each dedi-
cated to a separate part of the Autopilot Tasks: Monitors, 
Actors and UCAP configuration. Each of them provides a 
status view of uploaded user scripts, as well as interactive 
tools to manage the content of the service, such as adding 
and removing script files or starting and stopping Task ex-
ecution. 

To make sure that the communication is secure, an 
HTTPS connection to the server has been set up, with the 
help of tools provided by the CERN Certification Author-
ity, giving an encrypted communication channel between 
the service and the user. 

To restrict access to authorised users, Role Based Access 
(RBAC) is used for user authentication. On top of that, to 
distinguish between the different types of users and restrict 
access even further, three different internal roles (Guest, 
Operator, SuperUser) have been defined allowing for the 
fine-tuned levels of control over the framework. 

The web interface also provides a set of features to help 
the users service their Tasks in case they do not behave as 
expected, such as: 
• Checking python script correctness at start-up time – 

when the user tries to start a new python script, the 
check for basic code errors, like wrong indentation 
level, is performed. Since obvious mistakes like this 
would prevent the script from running correctly, an er-
ror message specifying the reason of the failure is 
shown to the user, and the new process is never started. 

• Logging mechanisms – the user is provided with a pre-
defined logger, which can be used inside user’s script 
to log any useful information during code execution. 
User logs are stored on the server and are easily acces-
sible through the web-interface.  

• Automatically catching runtime exceptions – execu-
tion errors which may happen at runtime and are not 
handled by user code are captured by the framework 
and put into the user logs for post-mortem analysis. 

• Subscription status preview – for each Monitor Task, 
the list of all its Data Sources and their connection sta-
tuses is provided. This allows the user to see in real 
time if the data from each Data Source is available. For 
quick debugging of broken subscriptions, a remote 
‘test get’ feature is provided to query the input devices. 

• File peeking – the user can visualise the task code di-
rectly in the web interface. 

• Test data generation – before the Monitor script will 
be uploaded to the server it has to be written offline. 
Python at its core is a language where it is easy to 
make coding errors, so we give the possibility to rec-
ord a specified amount of input data from UCAP in 
the form of JSON files, that can be downloaded by the 
users and fed to their algorithms offline, making it 
easier to find some obvious problems upfront, before 
the final version will be uploaded to the server. 

Source Code Management – GitLab 
To manage the state and content of user script files, the 

server is connected to a dedicated git repository hosted on 
CERN’s GitLab service. The repository contains a config-
uration file listing explicitly all Actors, Monitors and 
UCAP configuration files. This allows the server to easily 
recognize the expected role of a given file and handle it 
accordingly.  

By using GitLab, the history of changes is available for 
all files, providing a clear trace of how content was 
changed, by whom and when. It also gives a simple way to 
roll back to a previous version of the file in case the new 
version is not behaving as expected. 

The server uses the GitLab REST API to compare files 
from the repository with those currently hosted on the 
server as well as download them if necessary. 

From the server perspective, updating any script file is 
as simple as two clicks on the web panel. First click to 
‘check’ for any changes, where the server compares com-
mit IDs of the files, and the second click to ‘synchronize’ 
the file, meaning downloading the latest version of the file 
from the GitLab repository if it is newer than the version 
currently on the server. 

For safety reasons the script files can only be synchro-
nized if the corresponding Autopilot Task is not in a ‘run-
ning’ state. However, the version check can be done at any 
time, as it does not impact the content of the server. 

When any script file has been recognized as outdated – 
a notification label is shown next to the file name on the 
web panel, making it easily noticeable. As an added value, 
the label itself is a hyperlink to the GitLab webpage com-
mit details, which highlights changes in the script file con-
tent between versions, thus allowing for a quick verifica-
tion before deciding to synchronize script files to the 
server. 

The server is also capable of being notified by a GitLab 
web hook automatically, after any file has been changed, 
sparing the user the necessity of invoking the ‘check’ oper-
ation manually. 

No automation is foreseen for the non-interactive syn-
chronization of script files. Since those files are actually 
running on the server, it is critical for stable operations, to 
only update runtime content when there is a safe opera-
tional window for doing that. This update can only be per-
formed by super-users, as defined in the preceding section. 
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UCAP 
The Unified Controls Acquisition and Processing 

(UCAP) project aims to provide “a generic, self-service, 
controls data processing platform”. 

In simpler terms, UCAP is a platform that allows the cre-
ation of a standard Virtual Device, which receives data 
from a predefined list of signals, gives that data to the user-
written or configured code (known as a Transformation), 
which can in turn perform any kind of calculations and pro-
cessing, and publishes the result back to the Controls sys-
tem using a standard middleware protocol. State is retained 
between calls to the user transformation, so that it is possi-
ble to apply transformations over multiple beam cycles (for 
example averaging a value over some time window). 

At the core of the Linac4 Source Autopilot, Monitors are 
in fact UCAP Virtual Devices, publishing transformed data 
that is in-turn used by the Actors to interact with the 
Source. Corresponding data is stored in the logging data-
base (NXCALS) and can be used later for purposes such as 
diagnostics. 

Monitors 
As explained above, Monitors are Virtual Devices run-

ning on a UCAP node. The Autopilot server simply acts as 
a man-in-the-middle between the user and the UCAP 
framework, meaning the user uploads UCAP configuration 
and transformation code files using the aforementioned 
web panel, and the Autopilot servers takes care of turning 
that into a request understandable by the UCAP frame-
work. 

It is the responsibility of the UCAP framework to create 
a new process to receive, transform and publish data. The 
Autopilot server does nothing more than ask UCAP to 
add/remove or start/stop the Virtual Device in question. 

The data transformation code is written in Python using 
the provided ucap-python package, which contains all in-
terfaces representing the data model of UCAP. The usage 
of this package is mandatory for every Autopilot Monitor 
script. 

By design, Monitors only read and transform the data 
published by other Devices and do not interact themselves 
with the Control system. 

Monitors can also receive configuration parameters for 
their execution by including LSA virtual settings values in 
their data input. For example, a minimum and maximum 
needed to perform a value validation can be created as a 
LSA virtual setting, and input to an Autopilot Monitor 
along with the real Device acquisition for comparison. In 
this way the LSA parameters allow many different ways to 
incorporate settings into Autopilot applications, at the same 
time keeping a history of changes to these settings inside 
the LSA settings history repository. 

Actors 
Actors are Tasks that continuously receive data produced 

by Monitors, and possibly some other sources such as LSA 
settings (both from real Devices, and Virtual Devices). 
Based on these inputs they can decide to invoke a particular 

action if necessary. Each Actor Task runs as a separate pro-
cess.  

Actor Tasks can use a special API to notify the Autopilot 
server about certain events by invoking specific actions, 
which are typically reflected on the web panels (and 
through other services like the electronic Logbook (eLog-
book) and LASER alarms system). They give useful real-
time feedback of a running Actor’s behaviour. Invokable 
actions include: 
• heartbeat – an Actor script can call this method to an-

nounce that it is alive. It is usually invoked by the user 
whenever new data is received by the Actor. 

• set_last_acted – an Actor script can notify that it is per-
forming an action it considers as an ‘act’ method (like 
applying a new hardware setting) and provide a short 
message describing it.  

• set_last_error / clear_last_error – an Actor script can 
notify the server that it recognized a situation consid-
ered as an error, for example that it received corrupted 
data.  

• abort_task – an Actor script can ask the server to 
cleanly abort the Task execution, for example where a 
set of conditions have no path defined, and the situa-
tion is considered unsafe for the Actor.  

• write_to_elogbook – an Actor script can write a short 
message to the eLogbook service.  

• set_alarm / clear_alarm – an Actor script can create a 
new alarm that will be shown on the LASER console 
expanding further possibilities of notifying operators 
that something on the Autopilot requires attention. 

Unlike Monitors whose lifecycle is managed within 
UCAP, the lifecycle of Actor Tasks, is managed directly by 
the Autopilot server. This means the Autopilot server is re-
sponsible for creating a new process and shutting it down 
later when the user requests the Task to be started or 
stopped, respectively. 

Graphical User Interface 
The Autopilot can be monitored and, to a certain extent, 

controlled through an interactive expert application (GUI) 
that can be started from the Common Console Manager 
(CCM). The main screen of the GUI is the Beam Current 
Transformer (BCT) Stabilize panel. This panel provides a 
graphical overview of the current and historic state of the 
source current stabilization Task, discussed in some detail 
further in this document. It also allows one to start and stop 
the regulation Tasks, and to control the current set points. 

Along with the BCT Stabilize panel, the GUI provides a 
number of additional panels with a similar functionality, 
namely the electron to H- (eH) Ratio panel, the Caesium 
Flow panel, and the High Voltage (HV) Reset panel. 

Integration with Accelerator Controls Services 
The configuration of the input and output devices of the 

Autopilot is handled by the Controls Configuration Ser-
vice. 

To allow the Autopilot server to communicate its im-
portant actions to the outside world when necessary, Actor 
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Tasks have the possibility to write messages to the eLog-
book. Behind the scenes the server uses the REST API of 
the eLogbook to write messages from the Actor Task to the 
appropriate section of the logbook. 

This functionality is limited solely to Actor Tasks, as 
they are the only processes whose actions can have impli-
cations for the operation of the accelerator, and thus should 
be announced to operators when necessary. 

The Autopilot server is also integrated with the LASER 
(Alarms) service, giving Actor Tasks the possibility to cre-
ate a new alarm that will be visible by operators on the LA-
SER console. The functionality is limited to Actor Tasks 
for the same reason as explained above for the eLogbook 
integration. 

LSA (Settings Management Service) is used by the Au-
topilot to manage Actor settings. This allows the standard 
Accelerator controls graphical applications to visualise 
data published by the Autopilot, and to influence the be-
haviour of the Autopilot.  

NXCALS (Logging Service) is used by the Autopilot to 
log the values published by the Monitors. Data is also ex-
tracted from NXCALS when starting the Autopilot GUI, to 
prefill charts with a certain amount of historical data. 

Deployment 
The two core parts of the framework are the Autopilot 

Flask Server, and the Autopilot UCAP Node (see Fig. 2.). 
The Autopilot Flask Server, as an Acc-Py-based service, 
uses Acc-Py tools for the releases of new versions. How-
ever, for the deployment on its dedicated server, a custom 
deployment script had to be developed, as currently Acc-
Py lacks tools for services deployment. The UCAP Node, 
being a Java application at its core, uses CBNG [9] for both 
releasing and deployment. 

Both services run on the same server running CentOS 7.  
 

 

USER TASKS FOR THE  
SOURCE AUTOPILOT 

In this section we describe the user tasks available and 
their status as of this writing. 

BCT Stabilize 
This task is the main workhorse of the Autopilot and its 

effect is illustrated in Fig. 3. Its objective is to keep the H- 
beam current constant by adjusting the forward power of 
the 2MHz RF used for plasma production and heating 
based on readings from a Beam Current Transformer 
(BCT) in the Low Energy Beam Transport line (LEBT). 

Phase Stabilize 
As well as the RF power to the ion source, the phase of 

the RF is also measured. This phase can be used to assess 
the efficiency of the coupling of the RFQ power to the 
source plasma. The Phase Stabilize Task monitors the 
measured phase over defined windows and compares them 
to the set point. If outside a dead band, the frequency is 
adjusted along the pulse to return to the phase set point. 

HV Reset 
Ion sources typically suffer from sparking events in the 

order of a few per day. The source power converters go into 
a fault state when an over-current is detected, and do not 
deliver the voltage until reset. 

The HV Reset Monitor delivers the present status of the 
HV converters, as well as counting the number of times 
that they have gone from ON to FAULT status in the last 
24 hours. 

The Actor reads the repeated HV converter statuses from 
the Monitor, and when it moves from ON to FAULT status, 
it initiates a procedure to restart them. 

eH Ratio 
The eH ratio is a Monitor that uses the currents measured 

on the source high voltage power converters, and the BCT 

Figure 2: Autopilot deployment overview. 
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current in the LEBT, in order to calculate the electron to H- 
ratio from the source.  

Cs Flow 
The Linac4 ion source uses caesium to reduce the work 

function of the plasma electrode, which enhances negative 
ion production. Caesium is evaporated into the source, un-
der vacuum, from a heated oven. 

The amount of caesium that exits the oven can be esti-
mated by scaling of the vapour pressure in the oven to a 
calibration point. Integrating the flow over time gives a to-
tal mass. This monitor produces this calculation in real-
time, and allows the instantaneous flow and total mass data 
to be logged over time using the NXCALS system. 

SUMMARY 
Within the Linac4 Source Autopilot project, a frame-

work has been developed to allow users to develop code in 
Python that runs on a stable server, and interfaces to several 
accelerator controls components to allow monitoring, set-
tings, diagnostics, and testing. The framework is in use at 
CERN helping to control the Linac3 and Linac4 sources. 
The framework described in this paper can be deployed in 
various operational scenarios involving the integration of 
user code with general controls services. Although the ac-
celerator Controls services leveraged by the framework are 
CERN specific, we are confident that fundamental building 
blocks of the framework can be reused outside the Organi-
zation. 

Within this framework, tasks have been developed to 
continuously adjust the source RF power and perform au-
tomatic resets of the High Voltage converters. Thanks to 
this the stability of the source has improved remarkably 
over this period. 
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