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Abstract

RadiaSoft and Jefferson Laboratory are working together
to develop a machine-learning-based smart alarm system for
the CEBAF injector. Because of the injector’s large number
of parameters and possible fault scenarios, it is highly desir-
able to have an autonomous alarm system that can quickly
identify and diagnose unusual machine states. We present
our work on artificial neural networks designed to identify
such undesirable machine states. Our initial efforts have been
focused on model prototyping and data curation. In this pa-
per we present an overview of our initial findings and our
efforts to generate a robust dataset for the alarm system. We
conclude with a discussion of plans for future work.

INTRODUCTION

A significant aspect of accelerator operations involves
identifying the root causes of faulty machine states. For ex-
ample, the machine trips on a beam loss monitor. But why?
What underlying cause trips the machine? Sometimes the
reason is obvious, while other times not. Existing alarm sys-
tems commonly indicate when specific machine parameters
drift outside their normal tolerances. However, operators
must still interpret these alarms in the context of many inter-
acting systems and subsystems before they can take the the
most appropriate corrective action.

The project described in this paper has at its primary ob-
jective the development of a machine-learning-based model
with the ability to rapidly identify potential root causes of
machine faults (hence the term Smart Alarm). More specifi-
cally, given machine readings (defined more precisely later),
the system continuously compares the model’s predictions
of the expected machine settings (also defined later) against
actual machine settings. When a discrepancy arises that
exceeds some user-defined threshold, the system raises an
alarm that directs operators (or subject matter experts) to the
“bad” setting (e.g., corrector, solenoid, rf gradient, ezc.). If
this effort succeeds, a more ambitious goal will be to extend
the work to monitor the machine for parameter drifts and
identify when the machine needs “tweaking” before a fault
event occurs.

During our initial efforts at training and validating ma-
chine learning (ML) models, we obtained puzzling and dis-
appointing results. The problems at issue we traced back
to various difficulties with our data, including some outlier
(read nonsensical) vacuum readings. In the process of that in-
vestigation, we examined our data more carefully and found
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Figure 1: Inverse model trained on operations data from the
JLab injector.

other aspects of data collection and selection that required
careful consideration. The lesson to learn here is that under-
standing one’s data—though time-consuming—constitutes
a critical part of any ML effort.

In the following sections, we describe briefly some of our .

early ML efforts and how they led us to make a thorough
investigation of our data and the data collection process.
We then describe our data, the collection process, and our
evolving understanding of how best to curate data that will
prove useful for the training and validation of future ML
models. We conclude with our plans for future work.

INITIAL ML EFFORTS

Among our first efforts was training an inverse model on
data taken from the JLab injector, with the goal of using mea-
surements (readings) to predict machine settings. Figure 1
shows the loss functions and the somewhat disappointing
R? fit results for one training run with this data. Modifica-
tions to the network architecture, number of epochs, choice
of optimizer, efc., made relatively little improvement on the
overall results.

This circumstance led us to undertake a critical exami-
nation of our data, which at the time comprised that taken
during (i) regular operations of the injector and (ii) a dedi-
cated study of the machine. The various parameters (called
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Figure 2: Summary of all Set (upper) and Read (lower) PV data. For each index, the red and blue vertical bars show the
range of values spanned respectively by injector operations data and by injector study data. The vertical scales have been
compressed by taking a cube-root. The medians of the operations data have been subtracted out.

Process Variables, or PVs) are divided into Settings and
Readings. Figure 2 shows the ranges spanned by the data
taken for each of the PVs, and in particular the overlap of
the ranges between operations and study data. The hope was
to use, say, operations data (of which we had much more)
for training and validation, and the study data for testing.
For that to work well, however, one would need to see that,
say, the range of each Study PV lies within the range of its
corresponding Operations PV—or vice versa. But, as shown
by the graphics in Fig. 2, neither case consistently holds.

Another aspect of the data, not illustrated here, is that
many of the Set PVs take on just a very few discrete values.
This minimal variation suggests that it will, as we have found
so far, prove difficult for ML networks trained on this data
to achieve a useful characterization of the JLab injector.
The solution, of course, is more data and, more importantly,
better data.

A newer dataset from the JLab injector comprises some
409 500 instances averaged over one-second intervals for
some seven weeks last summer. (See the next section for
more details.) This data has no natural divide along which
one might assign the different records into separate train
and validation datasets; hence we attempted such a split
randomly. In this case, too, we found some PVs for which the
training range covers the validation range, and other PVs for
which the reverse holds. This presents a challenge for training
because there are ranges where the model would be trying to
extrapolate to a new domain. This, a fundamental challenge
for machine learning, and one of the challenges of model-
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based anomaly detection, means that a full understanding of
the data is critical to success.

CURATING THE DATA

Five datasets were collected using several different meth-
ods. The variety of approaches reflects how our understand-
ing of capturing machine data has evolved (and how it contin-
ues to do so). The results of this work will likely inform the
modification of current—or the development of new—tools
to capture and/or mine data more efficiently.

Collected Datasets

The datasets collected exist in tabular form, with each col-
umn representing an EPICS process variable (PV), and each
row a particular snapshot in time. For example, collecting
data for the three PVs Date, RO47GSET, and RO47PSET ev-
ery hour, on the hour, for two days of operation would yield
a dataset of size of 48 x 3 [= (2 days x 24 readings/day) x
(3 PVs)] (as shown in Fig. 3). We also give the range of dates
(to the nearest day) covered by each dataset below (listed in
the order collected).

» Dataset A Data collected from dedicated beam studies
in which select injector beamline components were sys-
tematically varied and downstream responses recorded.
Date: 2020-09-08 (swing shift) and 2020-09-14 (swing
shift). Size: 654 x 223.

* Dataset B First attempt at mining the operational
archiver for “good beam”. Date: 2020-08-30 to 2020-
09-18. Size: 24 x 302.
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Figure 3: Ranges of the Scaled setting (upper) and Reading (lower) PVs, color coded by data split.

e Dataset C Mining the operational archiver for “good
beam” (using less stringent constraints). Date: 2020-
08-01 to 2020-09-21. Size: 5467 x 303.

e Dataset D Mining the operational archiver without
imposing “good beam” constraints. Data was collected
and averaged over each second of the Fall 2020 op-
erational run. Date: 2020-08-01 to 2020-09-20. Size:
409 549 x 318. (This represents an initial filtering for
beam-on conditions.)

* Dataset E Mining the historical archiver without im-
posing “good beam” constraints. Data was collected
hourly for the last two years. Whereas the operational
archiver stores machine data from the last several
months, the historical archiver contains data from the
previous few years. Date: 2019-02-01 to 2021-01-30.
Size: 17520 x 262. (The period from 2020-09-20 to
2021-01-30 represents a scheduled accelerator down
period and contains no useful data.)

Several observations can be made. First, many of the
datasets contain overlapping dates. Second, each dataset
records a different number of PVs. Finally, there is a clear
evolution in data collection strategy: It started with conven-
tional beam studies efforts where knobs were varied and
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responses recorded (Dataset A). While this provided several
hundred examples, both the complexity of the problem we
are trying to solve and the means with which to solve it (deep
learning) necessitates much more data. We then transitioned
to mining the archiver for PV values. Initial efforts placed
the burden on carefully designing constraints so as to ensure
that we collected only PVs corresponding to “good beam”.
This resulted in several thousand examples (Dataset C). We
then transitioned to a mode of a collecting data from the
archiver at regular intervals (either hourly or every second)
with no filtering. This shifted the burden of extracting the
appropriate data for training models from the data collection
effort to the data pre-processing step.

Cleaning the Data

Because the dates of Dataset D overlap those the three
previous datasets (A, B, and C), we now focus only on
Datasets D and E. Some initial “cleaning” of the data in-
volved clerical matters—reformatting, renaming columns,
combining and the like. The more significant matters in-
cluded various filters applied to the data:

* Refine filtering from “beam on” to “beam being on”

and transported to the end of the injector.
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* Remove those (few) columns that contain a large num-
ber of NaNs.

* If a column contains a missing value (e.g., NaN), re-
move the associated row (across all columns).

* Some PVs take only integer values (e.g., 0 or 1). Be-
cause of the averaging the entries occasionally have
non-integer values, indicating a change of state. Re-
move those rows.

After combining the resulting versions of Datasets D and E,
removing duplicate rows, and retaining only the common
set of PVs (there are 235), we arrive at a dataset of size
406397 x 235.

Partitioning the Data

Regardless of neural network architecture, one needs a
well-defined set of inputs that the model learns to map to
a well-defined set of outputs. Our next step here involves
partitioning the 234 PVs (we exclude the Date column) into
appropriate Setting and Reading datasets. At first, we define
a Setting as any PV that an operator can adjust during routine
beam tuning. These include phase and gradient set-points of
radio-frequency (rf) cavities, solenoid strengths, corrector
strengths, and the like. A Reading, on the other hand, we
characterize as read-backs of various diagnostic systems.
These include readings from beam loss monitors (BLMs),
beam position monitors (BPMs), vacuum signals, beam cur-
rent monitors (BCMs), and statistical descriptions of the
beam as extracted from a synchrotron light monitor (SLM)
image. In the end, we identify 108 Setting and 126 Reading
PVs.

Executing a partition, however, proves less obvious than
it sounds. Consider the beam current monitors: Should they
count as Readings, as seems obvious, or as Settings? The
BPM wire-sum signals, clearly Readings, act as a proxy
for the beam current, which would seem to be a Setting.
Depending on the details of a given ML architecture, we
might want the model to learn the BCM current readings
from BPM wire sums, or learn the wire sums from the BCM
readings. In either of these cases, we shall have to reclassify
some PVs from Readings to Settings. Or perhaps we ought to
add laser power PVs as Settings, so as to capture an alternate
proxy for the beam current treated as a Setting.

In the course of this review of PVs, we identified other
issues: Several PVs do not appear in the data, including set-
tings for one of the rf cavities and readings from several
vacuum PVs. In addition, solenoids and correctors appear in
the data, but quadrupoles do not. With regard to excluding
he quadrupole PVs, the initial thinking was that quadrupoles
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do not often change value, and static (or nearly static) train-
ing data contains very little not serve to teach a given MLL
model. Whether to include then in the future requires further
consideration.

For future data collection efforts, each injector PV need
to be examined and a decision made as to whether or not
to include it in the dataset for addressing the problem at
hand. Moreover, those PVs should be explicitly defined at
the outset, so as to ensure that all subsequent data collection
efforts include a common, consistent set of PVs.

FUTURE WORK

Two primary challenges underlie the construction of a
Smart Alarm system. The first is feature selection/down-
selection, and the second is choosing an appropriate model.
We will explore the use of different feature selection tools
to develop reduced representations of given datasets. In ad-
dition to auto-encoders,we plan to develop both linear and
nonlinear classifiers, including the possible use of neural
networks and decision trees as nonlinear classifiers. We will
compare the performance of different classifiers trained us-
ing supervised learning and establish some general heuristics
for fault detection on this type of injector. We will begin by
identifying a few simple fault scenarios, and then build on
this to include a range of different faults, including those
caused by coupled errors within the machine. We will also
explore the use of unsupervised learning to train classifiers.
Algorithms such as DBSCAN, gaussian mixture modeling,
and agglomerative clustering are well suited for clustering a
variety of distinct types of data. Once trained, those models
can track the vicinity of a given machine state to the locations
of distinct clusters determined from training.

CONCLUSION

Data provides the fuel for machine learning. In the con-
text of the CEBAF injector, we are still learning how best
to collect and curate the appropriate data for training our
models. The archiver provides a rich—though largely under-
utilized—source of data. Using the toolkit of data science,
we believe there is potential for a deeper understanding of
machine performance from data that has already been col-
lected.
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