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Abstract
In recent years, artificial intelligence (AI) has experienced

a renaissance in many fields. AI-based concepts are nature-
inspired and can also be used in the area of accelerator con-
trols. At HLS-II, there are not many studies on these proce-
dures. We focused on HLS-II beam stability in order to get
better performance. We have created a deep learning-based
approach for correcting beta function. Simulation studies
reveal that the method presented in this work performs well
in terms of correction outcomes and efficiency, resulting in
a new way to adjust the accelerator beam function.

INTRODUCTION
Since the 1980s, artificial intelligence (AI) approaches in

accelerator control have been studied [1]. In the light of re-
cent theoretical and practical advances in machine learning
and the use of deep neural network-based modeling and con-
trolling techniques, new approaches for the control and mon-
itoring of particle accelerators are emerging. Furthermore,
the availability of powerful deep learning programmings
frameworks like TensorFlow [2], PyTorch [3], Keras [4],
and Matlab allow rapid and optimized implementations of
complex algorithms and network architectures. Therefore,
we propose a method based on a deep neural network to
correct the beta function.

FEEDBACK THEORY
Corrective Theory for the Beta Function

The beta function is the lateral dynamic function of the
particle, and it is one of the most important optical param-
eters of a beam. The focus intensity K of the quadrupole
and the change Δ𝑄𝑥,𝑦 of the storage ring tune at this time
are recorded so as to calculate the beta function of the
quadrupole. When changing ΔK, the theoretical formula for
maintaining the measured value of the ring beta function is

𝛽𝑥,𝑦 = ± 2
Δ𝐾𝑙

(
cot

(
2𝜋𝑄𝑥,𝑦

) [
1 − cos

(
2𝜋Δ𝑄𝑥,𝑦

) ]
+ sin

(
2𝜋𝑄𝑥,𝑦

) ) (1)

The theoretical formula for the measured value of the func-
tion can be simplified as follows when the tune is far from
the integer or half-integer resonance line, and the change
value is small.

𝛽𝑥,𝑦 ≈ ±4𝜋
Δ𝑄𝑥,𝑦

Δ𝐾𝑙
(2)
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According to the formula,the beta function at the location a
quadrupole magnet is calculated using the variation of the
quadrupole strength and the measured tune shift.

Using a Deep Learning Model to Conduct Beta
Function Correction

The beta function of the storage ring receives feedback
correction based on the generated storage ring beam function
model. The feedback correction diagram of the HLS beam
beta function is shown in Fig. 1. The steps involved in
beta function feedback correction are followed: The focus
intensity change of the storage ring quadrupole is obtained
by feeding the beta function error value into the storage ring
beam model. The focus intensity change is sent back to
the storage ring to obtain the amended beta function value.
This goes back and forth until the beta function is wholly
corrected.

Figure 1: Schematic of the beta function correction system
using a Neural network method.

MACHINE LEARNING DESIGN STEPS
Five significant steps are involved in developing an ML-

based beat function application (see Fig. 2). Data acquisition
and cleaning are the first steps. The topology of the neuron
network is then defined and optimized. Finally, the beat
function correction application must be tested after multi-
ple training sessions and continuous performance tests. In
the following sections, we will go over the most critical
development steps.

Data Generation
In order to perform supervised neural network learning,

A large number of data pairs must be provided. As a result,
we took the Lattice as an object and created the HLS-II
virtual storage ring model. The final data is finished with
MATLAB’s AT toolbox and a python program created with
pyAT. After that, 10,000 data pairs were created. Each data
pair has 96 data points, with Δbetax (32), Δbetay (32), and
Δk (32).

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV011

Feedback Control, Machine Tuning and Optimization

WEPV011

645

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 2: Development stages for an ML-based beta function
correction.

Definition of Neural Network Structure

The topology diagram of the neural network after screen-
ing is illustrated in Fig. 3, which includes four hidden layers,
batchnorm layers, and dropout layers. It has six layers of
neurons, with 64 input neurons (related to the number of
beta functions) and 32 output layer neurons (for the num-
ber of quadrupole values). The neurons in the buried layer
are chosen based on previous experience [5]. Deep neural
networks can approximate continuous functions of any com-
plexity with arbitrary precision, according to research. For
simulation, we use a deep feedforward neural network. The
TensorFlow2.0 framework is used to create the deep neural
network model.

Some Processing

Normalization is applied to both the input and output, and
they are on a single uniform standard. Full connection is
used in the neural network connection, and Dropout is used
in this application. Dropout is a type of learning strategy
that’s used to improve neural networks. Dropout randomly
disables a small number of neurons throughout each training
phase, drastically reducing the complexity of the connection.
It can also help to reduce overfitting caused by data while
also improving the generalization of neural networks.

Figure 3: Feed Forward Neural Network (FFNN) topology
used for ML-based beta function correction.

Model Train
The data comes from the previous virtual storage ring. A

total of 1,000 groups are generated. These training data sets
are divided into two parts in proportion.

1. data just for pure training, adjusting weights and bias
values to minimize the MSE (80%)

2. Testing data is used to measure how accurately the
network was trained (20%)

Adjusting the hyperparameters involves the first change,
which is changing the learning rate. Let us use Adam, a
gradient-based optimization approach rather than stochastic
gradient descent. Because of his excellent computational
efficiency and minimal memory footprint, Adam enjoys the
advantages. It is pretty simple to use the hyperparameters,
and just a few parameter tweaks result in the desired outcome.
The iteration count is also critical. This is the number of
times the entire training set is input to the neural network.
Iterations can be considered adequate when the difference
between test and training is minimal. It is over-fitting if
the loss value initially decreases and then increases. The
training times must be lowered. After testing, it was found
that the number of epochs is 100 iterations, resulting in
superior outcomes. The losses on the training set are known
as "train loss" and on the test set as "value loss."MSE is a
quantitative representation of model performance. So after
around 80 iterations, the training set and test set stabilized.
The MSE is less than 10-e5. Currently, it is confirmed that
the neural network fitting algorithm’s accuracy is acceptable,
and the measured results are also rather dependable.

SIMULATION ANALYSIS
Therefore, we have corrected the beta function using a

fairly complete neural network model so far. Through simu-
lation, we generate beta function that have errors at random.
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The results are depicted in Fig. 4 using this Storage ring
beam model. We see that after many corrections, the beta
function close in on their theoretical values quickly. The
method has been proven to be feasible. The beta functions
of the storage ring was measured before and after the lattice
correction for comparison [6]. A before-and-after compari-
son shows that the average beatx beating was 22.82% and
3.3%, respectively. However, due to the tiny fluctuation in
vertical, the correction has not changed significantly.

Figure 4: Beta parameters after iterations through the model.

CONCLUSION
The neural network approach is introduced to address the

current beta function correction problem. Through the neu-

ral network model, the beta function is effectively corrected
and has a good effect, providing fresh ideas and enhancing
beam stability. Make a drawing. Other beam current prop-
erties on the storage ring can be studied using the neural
network approach. It can be used to solve various optimiza-
tion issues, including multi-parameter, multi-objective, so
on and so forth.
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