Keyword: laser
Paper Title Other Keywords Page
MOA01 Remembering Samuel Krinsky FEL, electron, free-electron-laser, experiment 1
 
  • L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The presentation recalls the person, life, and achievements of Samuel Krinsky, who passed away this year.  
slides icon Slides MOA01 [5.784 MB]  
 
MOA03 First Lasing at FLASH2 undulator, electron, operation, photon 7
 
  • S. Schreiber, B. Faatz
    DESY, Hamburg, Germany
 
  FLASH, the free-electron laser user facility at DESY (Hamburg, Germany), has been upgraded with a second undulator beamline FLASH2. The installation of the FLASH2 electron beamline, including twelve variable gap undulators, was finalized early 2014, and beam commissioning of the new beamline started in March 2014. We announce first lasing at FLASH2 achieved at a wavelength of 40 nm on August 20, 2014.  
slides icon Slides MOA03 [3.896 MB]  
 
MOB01 Pulse Control in a Free Electron Laser Amplifier FEL, electron, radiation, undulator 9
 
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Funding: Work supported by MIUR (DM1834 RIC.4-12-2002 and Grants No. FIRB- RBAP045JF2 and No. FIRB-RBAP06AWK3), and by the EU Commission in the Sixth Framework Program, Contract No. 011935- EUROFEL.
A significant progress has been made in controlling the properties of the radiation emitted by a FEL amplifier. Experiments have demonstrated the possibility both to increase the temporal coherence and to reduce the amplifier length to reach saturation, by seeding it with an external source. This may be a solid state, short pulse, laser (Ti:Sa,OPA..), doubled or tripled in a crystal, or a high order harmonic pulse generated in gas. The coherence improvement and the increased compactness of the source are only the first beneficial offspring of this marriage between the optical laser world and that of FELs. Non-linear effects in the seeded FEL dynamics may be exploited to shorten the pulse length beyond that allowed by the FEL natural gain bandwidth. Multiple seed pulses can be used to generate pulses whose temporal distance and properties are also controlled. Similarly, the FEL gain can be adapted to match the seed properties by tailoring the electrons phase space to generate ultra-short output pulses at unparalleled intensities. I had the honor (and luck) to participate in many relevant experiments at the SPARC and FERMI FELs and I will give my personal overview.
 
slides icon Slides MOB01 [29.932 MB]  
 
MOB03 Phase Space Manipulations in Modern Accelerators electron, FEL, cavity, radiation 16
 
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
 
  Funding: This work was supported by the National Natural Science Foundation of China under Grants No. 11327902.
Beam manipulation is a process to rearrange beam's distribution in 6-D phase space. In many cases, a simple phase space manipulation may lead to significant enhancement in the performance of accelerator based facilities. In this paper, I will discuss various beam manipulation techniques for tailoring beam distribution in modern accelerators to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and hold great promise in opening up new opportunities in accelerator based scientific facilities.
 
slides icon Slides MOB03 [5.078 MB]  
 
MOP014 X-ray Photon Temporal Diagnostics for the European XFEL photon, diagnostics, brilliance, electron 45
 
  • J. Liu, J. Buck, F. Dietrich, W. Freund, J. Grünert, M. Meyer
    XFEL. EU, Hamburg, Germany
 
  European XFEL (XFEL. EU) that will commissioning in 2016 shows great features on its extremely high number of light bullets (27000 p/s) and extremely high average brilliance. The FEL pulses in XFEL. EU are produced in a 10 Hz bunch trains that contains 2700 sub-pulses within the 600 μs time intervals, corresponding to a 220 ns sub-pulse separation and 4.5 MHz repetition rate. Characterizing the temporal properties of the high repetition rate FEL pulses that implicitly different from shot to shot is important for “pump and probe” experiments and data interpretation. Here we report the concept and recent progress about temporal diagnostic for XFEL. EU. THz streaking technique and spectral encoding will be implemented considering the high repetition rate and high brilliance of XFEL. EU. Laser based THz generation, optimization and numerical simulation for streaking FEL electrons with different photon energies will be presented. High repetition rate diagnostic requirements and solutions will also be discussed.  
 
MOP015 A Power Switching Ionization Profile Monitor (3D-IPM) electron, ion, detector, vacuum 47
 
  • H.F. Breede, H.-J. Grabosch, M. Sachwitz, L.V. Vu
    DESY Zeuthen, Zeuthen, Germany
 
  FLASH at DESY in Hamburg is a linear accelerator to produce soft x-ray laser light ranging from 4.1 to 45 nm. To ensure the operation stability of FLASH, monitoring of the beam is mandatory. Two Ionization Profile Monitors (IPM) detect the lateral x and y position and profile changes of the beam. The functional principle of the IPM is based on the detection of particles, generated by interaction of the beam with the residual gas in the beam line. The newly designed IPM enables the combined evaluation of the horizontal and vertical position as well as the profile. A compact monitor, consisting of two micro-channel plates (MCP) is assembled on a conducting cage along with toggled electric fields in a rectangular vacuum chamber. The particles created by the photon beam, drift in the homogenous electrical field towards the respective MCP, which produces an image of the beam profile on an attached phosphor screen. A camera for each MCP is used for assessment. This indirect detection scheme operates over a wide dynamic range and allows the live detection of the clear position and the shape of the beam. The final design is presented.  
poster icon Poster MOP015 [1.314 MB]  
 
MOP017 Measurement of the Output Power in Millimeter Wave Free Electron Laser using the Electro Optic Sampling Method FEL, radiation, detector, electron 50
 
  • A. Klein
    Israeli Free Electron Laser, Ariel, Israel
  • A. Abramovich
    Ariel University Center of Samaria, Faculty of Engineering, Ariel, Israel
  • D. Borodin, A. Friedman
    Ariel University, Ariel, Israel
  • H. S. Marks
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: this work funded in part by Israel Minstry of Defence
In this experimental work an electro optic (EO) sampling method was demonstrated as a method to measure the output power of an Electrostatic Accelerator Free Electron Laser (EA-FEL). This 1.4 MeV EA-FEL was designed to operate at the millimeter wavelengths and it utilizes a corrugated waveguide and two Talbot effect quasi-optical reflectors with internal losses of ~30%. Millimeter wave radiation pulses of 10 μs at a frequency of about 100 GHz with peak power values of 1-2 kW were measured using conventional methods with an RF diode. Here we show the employment of an electro-optic sampling method using a ZnTe nonlinear crystal. A special quasi optical design directs the EA-FEL power towards the ZnTe nonlinear crystal, placed in the middle of a cross polarized configuration, coaxially with a polarized HeNe laser beam. The differences in the ZnTe optical axis due to the EA-FEL power affects the power levels of the HeNe laser transmission. This was measured using a polarizer and a balanced amplifier detector. We succeeded in obtaining a signal which corresponds to the theoretical calculation.
 
 
MOP019 Double-grating Monochromator for Ultrafast Free-electron Laser Beamlines FEL, radiation, operation, focusing 58
 
  • F. Frassetto, L. P. Poletto
    CNR-IFN, Padova, Italy
  • M. Kuhlmann, E. Plönjes
    DESY, Hamburg, Germany
 
  We present the design of an ultrafast monochromator explicitly designed for extreme-ultraviolet FEL sources, in particular the upcoming FLASH II at DESY. The design originates from the variable-line-spaced (VLS) grating monochromator by adding a second grating to compensate for the pulse-front tilt given by the first grating after the diffraction. The covered spectral range is 6-60 nm, the spectral resolution is in the range 1000–2000, while the residual temporal broadening is lower than 15 fs. The proposed design minimizes the number of optical elements, since just one grating is added with respect to a standard VLS monochromator and requires simple mechanical movements, since only rotations are needed to perform the spectral scan.  
 
MOP021 Commissioning of a Dual-sweep Streak Camera with Applications to the ASTA Photoinjector Drive Laser timing, controls, cavity, gun 66
 
  • A.H. Lumpkin, D.R. Edstrom, J. Ruan, J.K. Santucci
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The high-power electron beams for the Advanced Superconducting Test Accelerator (ASTA) facility will be generated in a photoinjector based on a UV drive laser and the L-band rf photocathode (PC) gun cavity. The initial objectives of these studies were: 1) the evaluation of the amplified UV component’s bunch length and phase stability and 2) the commissioning of the laser room Hamamatsu C5680 streak camera system. We used a new readout camera based on the Prosilica GC1380 digital CCD with Gig-E readout that was compatible with our image processing tools. We observed a longer than expected UV bunch length of 4 ps σ and an unexpected peak multiplicity (with spacing of about 70 ps) in the synchronous sum of 5 UV micropulses. We have now systematically investigated the issues of whether the multiplicity was with each micropulse of the 3-MHz pulse train. We describe our extensive investigations that indicated both issues originated in the multi-pass amplifier. We have replaced the MPA with three single-pass devices, measured 3.5-ps bunch lengths without the multiplicity, and generated photoelectrons from the gun successfully.
 
 
MOP047 A 200 μm-period Laser-driven Undulator undulator, electron, plasma, alignment 131
 
  • F. Toufexis, T. Tang, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This project was funded by U.S. Department of Energy under Contract No. DE-AC02-76SF00515 and the DARPA AXiS program.
To reduce the linac energy required for a given synchrotron radiation wavelength, and hence the size of the device, a smaller undulator period with sufficient field strength is needed. In this work, a microfabricated, laser-driven undulator with 200um undulator period is proposed. A TE wave that co-propagates with the electron beam is excited between two polysilicon thin films, having a gap of 16.5um. The mode that is excited is a deflecting mode and causes the electron beam to wiggle. The device is fabricated on a silicon wafer, using conventional silicon micromachining techniques. A single polysilicon thin film is supported on a silicon chip, which has a slit from the back to allow delivery of the laser beam. Two such chips are bonded together to form a 16.5um gap, within which the electron beam passes through. The final device has dimensions 1cm x 1cm x 1.1mm and has approximately 35 undulator periods. In this paper, the model, design, fabrication, and cold measurements of the device are reported.
 
 
MOP049 Oxygen Scintillation in the LCLS detector, controls, instrumentation, electron 137
 
  • J.L. Turner, R.C. Field
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Oxygen is tested as a replacement for Nitrogen in the Gas Detector system in the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center. The attenuation and energy monitors for LCLS use Nitrogen, but for experiments at the Nitrogen K 1S energy of about 410eV this functionality is gone due to energy fluctuations above and below the K-edge. Oxygen was tested as a scintillating gas at 400eV and 8.3keV.
 
 
MOP057 Proposal to Generate 10 TW Level Femtosecond X-ray Pulses from a Baseline Undulator in Conventional SASE Regime at the European XFEL electron, undulator, free-electron-laser, FEL 164
 
  • E. Saldin, V. Kocharyan, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • G. Geloni
    XFEL. EU, Hamburg, Germany
 
  Output characteristics of the European XFEL have been previously studied assuming an operation point at 5 kA peak current. Here we explore the possibility to go well beyond such nominal peak current level. We consider a bunch with 0.25 nC charge, compressed up to a peak current of 45 kA. An advantage of operating at such high peak current is the increase of the x-ray output peak power without any modification to the baseline design. Based on start-to-end simulations, we demonstrate that such high peak current, combined with undulator tapering, allows one to achieve up to a 100-fold increase in a peak power in the conventional SASE regime, compared to the nominal mode of operation. In particular, we find that 10 TW-power level, femtosecond x-ray pulses can be generated in the photon energy range between 3 keV and 5 keV, which is optimal for single biomolecule imaging. Our simulations are based on the exploitation of all the 21 cells foreseen for the SASE3 undulator beamline, and indicate that one can achieve diffraction to the desired resolution with 15 mJ (corresponding to about 3·1013 photons) in pulses of about 3 fs, in the case of a 100 nm focus at the photon energy of 3.5 keV.  
 
MOP058 Purified SASE Undulator Configuration to Enhance the Performance of the Soft X-ray Beamline at the European XFEL undulator, FEL, electron, radiation 169
 
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
 
  The purified SASE (pSASE) undulator configuration recently proposed at SLAC promises an increase in the output spectral density of XFELs. In this article we study a straightforward implementation of this configuration for the soft x-ray beamline at the European XFEL. A few undulator cells, resonant at a subharmonic of the FEL radiation, are used in the middle of the exponential regime to amplify the radiation, while simultaneously reducing the FEL bandwidth. Based on start-to-end simulations, we show that with the proposed configuration the spectral density in the photon energy range between 1.3 keV and 3 keV can be enhanced of an order of magnitude compared to the baseline mode of operation. This option can be implemented into the tunable-gap SASE3 baseline undulator without additional hardware, and it is complementary to the self-seeding option with grating monochromator proposed for the same undulator line, which can cover the photon energy range between about 0.26 keV and 1 keV.  
 
MOP059 Beam Dynamic Simulations for Single Spike Radiation with Short-Pulse Injector Laser at FLASH simulation, operation, electron, radiation 173
 
  • M. Rehders
    University of Hamburg, Hamburg, Germany
  • J. Rönsch-Schulenburg
    CFEL, Hamburg, Germany
  • J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Schreiber
    DESY, Hamburg, Germany
 
  Funding: The project has been supported by the Federal Ministry of Education and Research of Germany (BMBF) under contract No. 05K10GU2 and FSP301
This paper discusses the generation of single spike SASE pulses at soft x-ray wavelength at the free-electron laser FLASH by using very short electron bunches of only a few micrometer bunch length. In order to achieve these extremely short bunch lengths, very low bunch charges (in the order of 20 pC) and short electron bunches exiting the photo-injector are required. For this, a new short-pulse injector laser with adjustable rms pulse duration in the range of 0.7 ps to 1.6 ps and bunch charges up to 200 pC was installed, extending the electron beam parameter range before bunch compression in magnetic chicanes. Beam dynamic studies have been performed to optimize the injection and compression of low-charge electron bunches by controlling the effect of coherent synchrotron radiation and space-charge induced bunch lengthening and emittance growth. Optimization includes the pulse parameters of the injector laser. The simulation codes ASTRA, CSRtrack and Genesis 1.3 were employed.
 
 
MOP060 Demonstration of SASE Suppression Through a Seeded Microbunching Instability electron, undulator, FEL, free-electron-laser 177
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, E. Hass, K. Honkavaara, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school 1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brilliance electron bunches needed for the operation of free-electron lasers. In this contribution, we demonstrate the application of a laser-induced microbunching instability to selectively suppress the SASE process. A significant decrease of photon pulse energies was observed at the free-electron laser FLASH in coincidence with overlap of 800 nm laser pulses and electron bunches within a modulator located approximately 40 meters upstream of the undulators. We discuss the underlying mechanisms based on longitudinal space charge amplification [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
 
MOP064 Statistical Properties of the Radiation from SASE FEL Operating in a Post-saturation Regime with and without Undulator Tapering FEL, undulator, radiation, free-electron-laser 194
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  We describe statistical and coherence properties of the radiation from x-ray free electron lasers (XFEL) operating in the post-saturation regime. We consider practical case of the SASE3 FEL at European XFEL. We perform comparison of the main characteristics of X-ray FEL operating in the post-saturation regime with and without undulator tapering: efficiency, coherence time and degree of transverse coherence.  
 
MOP065 Optimization of a High Efficiency FEL Amplifier electron, undulator, FEL, radiation 199
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing x-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.  
 
MOP075 Laser Seeding Schemes for Soft X-rays at LCLS-II undulator, electron, bunching, radiation 223
 
  • G. Penn
    LBNL, Berkeley, California, USA
  • P. Emma, E. Hemsing, G. Marcus, T.O. Raubenheimer, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC02-76SF00515.
The initial design for LCLS-II incorporates both SASE and self-seeded configurations. Increased stability and/or coherence than is possible with either configuration may be provided by seeding with external lasers followed by one or more stages of harmonic generation, especially in the soft x-ray regime. External seeding also allows for increased flexibility, for example the ability to quickly vary the pulse duration. Studies of schemes based on high-gain harmonic generation and echo-enabled harmonic generation are presented, including realistic electron distributions based on tracking through the injector and linac.
 
 
MOP077 Measurements of the FEL-bandwidth Scaling with Harmonic Number in a HGHG FEL FEL, electron, operation, experiment 227
 
  • E. Allaria, M.B. Danailov, W.M. Fawley, E. Ferrari, L. Giannessi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • E. Ferrari
    Università degli Studi di Trieste, Trieste, Italy
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  In this work we report recent measurements done at FERMI showing the dependence of the FEL bandwidth with respect to the seed laser harmonic at which the FEL is operated. Comparison of FEL spectra for different Fourier-limit seed and chirp pulses is also reported.  
 
MOP082 Perspectives for Imaging Single Protein Molecules with the Present Design of the European XFEL electron, photon, free-electron-laser, FEL 238
 
  • G. Geloni
    XFEL. EU, Hamburg, Germany
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • O. Yefanov
    CFEL, Hamburg, Germany
 
  European XFEL aims to support imaging and structure determination of biological specimens between less than 0.1 microns and 1 micron size with working photon energies between 3 keV and 16 keV. This wide operation range is a cause for challenges to the focusing optics. A long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. Due to the large divergence of nominal X-ray pulses with durations shorter than 10 fs, one suffers diffraction from mirror apertures, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which seem ideal for imaging of single biomolecules. Moreover, the nominal SASE1 is very far from the level required for single particle imaging. Here we show how it may be possible to optimize the SPB instrument for single biomolecule imaging with minimal additional costs and time, achieving diffraction without destruction at near-atomic resolution with 1013 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 1023 ph/cm2. This result is exemplified using the RNA Pol II molecule as a case study.  
 
MOP084 Enhancing Coherent Harmonic Generation using Tilted Laser Wavefronts electron, radiation, synchrotron, synchrotron-radiation 248
 
  • S. Khan
    DELTA, Dortmund, Germany
 
  Funding: Work supported by BMBF (contract 05K13PE3)
Coherent Harmonic Generation (CHG) to produce ultrashort pulses of synchrotron radiation is based on the interaction of relativistic electrons in a storage ring with femtosecond laser pulses in an undulator. The resulting periodic energy modulation can be converted to a density modulation by a dispersive chicane, giving rise to coherent emission at harmonics of the laser wavelength in a second undulator. If the first undulator is in a section with non-zero dispersion, the density modulation can be enhanced using tilted laser wavefronts, thus delaying the phase-space distributions of electrons with different energy with respect to each other. The most simple way to realize the wavefront tilt would be to introduce a small crossing angle between the electron and laser beam. Details are discussed for the case of the CHG short-pulse facility at DELTA, a 1.5-GeV synchrotron light source at the TU Dortmund University, but HGHG and EEHG seeding of free-electron lasers could also be performed this way.
 
 
MOP086 Broadly Tunable THz FEL Amplifier FEL, undulator, electron, radiation 252
 
  • C.H. Chen, F.H. Chao, Y.C. Chiu, Y.K. Gan, K.Y. Huang, Y.-C. Huang, Y.C. Wang
    NTHU, Hsinchu, Taiwan
 
  Funding: MOST 102-2112-M-007 -002 -MY3, Taiwan
In this paper we present a broadly tunable sub-MW THz FEL amplifier driven by a photoinjector with a sub-kW seed THz source tunable between 0.7-2.0 THz. Specifically an S-band photoinjector at 2.856 GHz generate a 3.3-5.5 MeV electron bunch with 0.5 nC charge in a 4.25 ps rms bunch length, which is injected into a 2-m long undulator with a period of 18 mm and an rms undulator parameter of 0.98. The driver laser of the photoinjector is a frequency quadrupled amplified, mode-locked Nd:YVO4 laser at 1064 nm. We recycle the unconverted infrared laser at 1064 nm to pump a THz parametric amplifier using a lithium niobate crystal as its gain crystal. This THz parametric amplifier generates a transform-limited THz pulse with sub-kW power between 0.7 and 2.0 THz, which is seeded into the undulator to produce broadly tunable, transform-limited, sub-MW THz radiation through FEL amplification with a gain of about 3000. Since the pump laser of the THz OPA is derived from the driver laser of the photoinjector, the seed THz pulse is fully synchronized and overlapped with the electron bunch. Experimental progress of this work will be presented in the conference.
*Work supported by MoST under NSC 102-2112-M-007-002-MY3
 
poster icon Poster MOP086 [1.269 MB]  
 
MOP087 Upgrade Plans for the Short-pulse Facility at DELTA electron, undulator, radiation, dipole 255
 
  • S. Hilbrich, H. Huck, M. Huck, M. Höner, S. Khan, C. Mai, A. Meyer auf der Heide, R. Molo, H. Rast, P. Ungelenk
    DELTA, Dortmund, Germany
 
  Funding: Work supported by DFG, BMBF, FZ Jülich, and by the Land NRW.
DELTA is a 1.5-GeV synchrotron light source operated by the TU Dortmund University with a short-pulse facility based on Coherent Harmonic Generation (CHG) * to produce radiation with wavelengths in the VUV regime. Even shorter wavelengths can be generated by an upgrade based on the Echo-Enabled Harmonic Generation (EEHG) technique ** which requires additional magnetic chicanes and undulators. A new storage ring lattice provides enough free space for an EEHG setup and additionally for a femtoslicing undulator. Besides the new optics, first simulation results of EEHG will be presented.
* S. Khan et al., Sync. Rad. News 26, 3 (2013).
** G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009).
 
 
MOP088 High Repetition Rate Energy Modulator System Utilizing a Laser Enhancement Cavity cavity, electron, radiation, resonance 260
 
  • Y. Honda
    KEK, Ibaraki, Japan
 
  A high intensity laser field can be realized at a high repetition rate using an enhancement optical cavity scheme. We propose to apply the 100GW-level laser field inside the cavity for producing a micro-bunch structure in an electron bunch. Combining this system with an ERL scheme of accelerator, it can be used for a seeded FEL at a high repetition rate of ~100MHz continuous beam. The longitudinal electric field at the center area of a higher-order transverse mode of laser can be used to modulate beam energy at a period of the laser wavelength. A 250 MeV class two-loop ERL accelerator has been proposed in KEK as a future upgrade plan of existing 35 MeV ERL test accelerator. It will be able to provide a low emittance, small energy spread, short bunch electron beam at a high repetition rate of continuous operation. We propose to apply this beam to produce a seeded VUV coherent radiation. We will discuss the feasibility of the scheme and status of the laser modulator development.  
 
MOP094 Indirect Measurements of NIR and UV Ultrashort Seed Laser Pulses using a Transverse Deflecting RF-Structure electron, undulator, experiment, interaction-region 272
 
  • N. Ekanayake, S. Ackermann
    DESY, Hamburg, Germany
  • S. Ackermann, C. Lechner, Th. Maltezopoulos, T. Plath
    Uni HH, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Seeding of free-electron lasers (FELs) using external coherent optical pulses recently became an area of interest as users demand spectrally and temporally coherent FEL radiation which is not achievable in traditional self-amplified spontaneous emission operation mode. Since temporal and spectral properties of the seed laser pulses are directly imprinted on the electron bunch, a proper characterization of these seed pulses is needed. However, the lack of any measurement technique capable of characterizing ultrashort seed laser pulses at the laser-electron interaction region is a primary drawback. In this paper we report indirect measurements of seed laser pulses in an undulator section using a transverse deflecting RF-structure (TDS-LOLA) at the free-electron laser FLASH at DESY. Temporally chirped and unchirped seed pulse length measurements will be compared with second-harmonic generation frequency-resolved optical gating measurements and theoretical simulations. Using this technique we will demonstrate that pulse artifacts such as pre- and post-pulses in the seed pulse in the femtosecond and picosecond timescales can be identified without any temporal ambiguity.
Authors acknowledge the support received from FLASH team and many groups at DESY in preparation and commissioning of experiments. We thank our colleagues in the FLASH seeding team for their support.
 
 
MOP096 Enhancing the Harmonic Content of an HGHG Microbunch electron, undulator, simulation, bunching 281
 
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Funding: BMBF grant 05K10PE1 and DESY
High Gain Harmonic Generation (HGHG) seeding has been demonstrated in the visible and ultraviolet, but it is limited in performance at high harmonics of the seed by the initial uncorrelated energy spread of the electron beam. A recent proposal from SINAP using a chirped electron beam and a canted pole undulator has suggested a new mechanism for cooling the uncorrelated energy spread of the electron beam in order to improve the performance of HGHG seeding at high harmonics. This note reviews the mechanism, the limitation of the concept and extrapolates to some new concepts using analogous mechanisms derived from transverse gradients of the laser properties. The impact of CSR wakes on the vanishingly short microbunches produced by the methods are also investigated.
[1] H. Deng and C. Feng, Phys. Rev. Lett. 111, 084801 (2013)
 
 
MOP097 A Concept for Seeding 4-40 nm FEL Radiation at FLASH2 electron, FEL, bunching, undulator 286
 
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Funding: Work supported by BMBF (contract 05K13PE3)
This note describes a scheme to seed the FLASH2 FEL over a range of 4-40 nm without impacting SASE capabilities. This scheme combines multiple seeding techniques, builds on current infrastructure and offers a maximized range of performance with higher pulse energies than what are available at lower-peak current facilities. The concept relies on Echo Enabled Harmonic Generation (EEHG), cascaded seeding, and Second Harmonic Afterburners (SHAB) while maintaining the possibility to operate with High Gain Harmonic Generation (HGHG) seeding at >30 nm wavelengths.
 
 
TUA02 A Review of High Power OPCPA Technology for High Repetition Rate Free-Electron Lasers operation, FEL, electron, free-electron-laser 310
 
  • M.J. Prandolini, R. Riedel
    HIJ, Jena, Germany
  • M. Schulz
    DESY, Hamburg, Germany
  • F. Tavella
    SLAC, Menlo Park, California, USA
 
  High repetition rate free-electron lasers (FEL) require the development of new laser systems that have the ability to operate at high average power. Optical parametric chirped-pulse amplification (OPCPA) is presently the most promising method to fulfill these requirements. This technique has been used to demonstrate amplification up to tens of watts with a repetition rate in the range between tens of kHz to MHz in burst and continuous mode. We review the current OPCPA technology for systems operating around 800 nm; this includes various frontend options, pump amplifier technology and latests results, and we discuss the important requirements for achieving high power lasers in both burst and continuous operation.
Work supported by the Helmholtz Institute Jena and the Deutsches Elektronen-Synchrotron DESY in Hamburg.
 
slides icon Slides TUA02 [4.997 MB]  
 
TUB02 Generation of Intense XVUV Pulses with an Optical Klystron Enhanced Self- amplified Spontaneous Emission Free Electron Laser FEL, klystron, electron, radiation 332
 
  • G. Penco, E. Allaria, G. De Ninno, E. Ferrari, L. Giannessi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. De Ninno
    University of Nova Gorica, Nova Gorica, Slovenia
  • L. Giannessi
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Fermi is a seeded FEL operating in high gain harmonic generation mode. The FEL layout is constituted by a modulator and six radiators separated by a dispersive section. The modulator and the radiators can be tuned to the same resonant frequency to set up an asymmetric optical klystron configuration where self amplified spontaneous emission can be generated and studied. This paper presents the experiment consisting in the analysis of the enhancement of the self-amplified spontaneous emission (SASE) radiation by the dispersion in the optical klystron. The FEL pulses produced with the optical klystron configuration are several order of magnitude more intense than in pure SASE mode with the dispersion set to zero, The experimental observations are in good agreement with simulation results and theoretical expectations. A comparison with the typical high-gain harmonic generation seeded Fel operation is also provided.  
slides icon Slides TUB02 [12.835 MB]  
 
TUB04 Operation of FLASH with Short SASE-FEL Radiation Pulses FEL, electron, operation, free-electron-laser 342
 
  • J. Rönsch-Schulenburg, E. Hass, N.M. Lockmann, T. Plath, M. Rehders, J. Roßbach
    Uni HH, Hamburg, Germany
  • G. Brenner, S. Dziarzhytski, T. Golz, H. Schlarb, B. Schmidt, E. Schneidmiller, S. Schreiber, B. Steffen, N. Stojanovic, S. Wunderlich, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Funding: The project has been supported by the Federal Ministry of Education and Research of Germany (BMBF) under contract No. 05K10GU2 and FSP301
This paper describes the experimental activity on the generation of very short FEL pulses in the soft x-ray range in the SASE-mode at the high-gain free-electron laser FLASH [1, 2]. The key element, a photo-injector laser which is able to generate laser pulses of about 2 ps FWHM has been optimized and commissioned. It allows the generation of shorter bunches with low bunch charge (of up to 200 pC) directly at the photo-cathode. Initially shorter injector laser pulses and thus shorter bunches eases the required bunch compression factor for short pulses below 10 fs duration which makes operation of the electron beam formation system to be more robust with respect to jitters and collective effects. As a result, overall stability of SASE FEL performance is improved. In the optimal case single-spike operation can be achieved. In this paper the experimental results on production of short electron bunches and the SASE performance using the new injector laser will be shown and the measured electron bunch and FEL radiation properties are discussed. In addition, optimizations of bunch diagnostics for low charge and short bunches are discussed.
 
slides icon Slides TUB04 [1.201 MB]  
 
TUP002 Characterization of Partially Coherent Ultrashort FEL Pulses FEL, electron, free-electron-laser, photon 346
 
  • C. Bourassin-Bouchet, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • C. Evain
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
 
  Temporal metrology is a major need for free-electron lasers. However, the lack of longitudinal coherence, that is shot-to-shot fluctuations, of these sources has prevented so far the full amplitude and phase temporal characterization of FEL pulses. To sort out this issue, we propose a solution inspired from attosecond metrology, where XUV pulse measurement techniques already exist, and from coherent diffraction imaging, where numerical solutions have been developed for processing partially coherent diffraction patterns. The experimental protocole implies the measurement of photoelectron spectra obtained through XUV-laser photoionisation. The spectra are then processed with an algorithm in order to retrieve the partially coherent FEL pulse. When applied to SASE FELs, the technique gives access to the full statistics of the emitted pulses. With seeded-FELs, the pulse shape becomes stable from shot-to-shot, but an XUV-laser time jitter remains. In that case, the technique enables the joint measurement of the FEL pulse shape (in amplitude and phase) and of the laser/FEL jitter envelope. The concept has been validated with numerical simulations in the context of the LUNEX5 FEL project.  
 
TUP003 Quantum FEL II: Many-electron Theory electron, FEL, resonance, photon 348
 
  • P. Kling, R. Sauerbrey
    HZDR, Dresden, Germany
  • R. Endrich, E.A. Giese, W.P. Schleich
    Uni Ulm, Ulm, Germany
 
  We investigate the emergence of the quantum regime of the FEL when many electrons interact simultaneously with the wiggler and the laser field. We find the Quantum FEL as the limit where only two momentum states are populated by the electrons. Moreover, we obtain exponential gain-per-pass and start-up from vacuum.  
 
TUP008 An Analysis of Optimum Out-coupling Fraction for Maximum Output Power in Oscillator FEL coupling, FEL, cavity, electron 368
 
  • Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The effect of the out-coupling fraction on the output power in oscillator FEL is analyzed. The formulas of the optimum out-coupling fraction and the corresponding maximum output power are given. They are dependent on the initial small signal gain and the passive loss rate of the light in the optical cavity. The initial comparison show that the result given by the formula agree well with the results in references.  
 
TUP009 A Simple Method for Generating a Few Femtosecond Pulses in Seeded FELs electron, FEL, radiation, linac 371
 
  • H.T. Li, Z.G. He, Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Major State Basic Research Development Program of China (2011CB808301) and the Fundamental Research Funds for the Central Universities of China (WK2310000045)
We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the centre part of electron beam and short pulses in high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse with duration of 8 femtoseconds (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 m.
 
 
TUP015 Radiation and Interaction of Layers in Quasi-plane Electron Bunches Moving in Undulators radiation, electron, undulator, free-electron-laser 388
 
  • N. Balal
    Ariel University, Ariel, Israel
  • V.L. Bratman
    IAP/RAS, Nizhny Novgorod, Russia
 
  The model of radiating planes (1D radiating gas) consisting of electrons that oscillate and travel with a relativistic translational velocity allows one to develop a simple general theory describing a number of important effects of radiation in a undulator for dense electron bunches formed in photoinjector accelerators. Having based on this method and taking into account both Coulomb and radiation interactions of the planes with an arbitrary density, particle velocity distribution and energy chirp we have found analytically and numerically efficiency and frequency spectrum for coherent spontaneous radiation, including conditions for generation of minimum narrow and very broadband spectra. The developed theory has been applied for estimation of a powerful terahertz radiation source with a moderate energy of electrons.  
 
TUP028 Mode Contents Analysis of a Tapered Free Electron Laser FEL, undulator, electron, simulation 437
 
  • S.D. Chen, K. Fang, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen, C.-S. Hwang
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, USA
  • K. Fang, S.-Y. Lee
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  For the ultimate use for the scientific experiments, the free electron laser (FEL) will propagate for long distance, much longer than the Rayleigh range, after exiting the undu- lator. To characterize the FEL for this purpose, we study the electromagnetic field mode components of the FEL photon beam. With the mode decomposition, the transverse coher- ence can be analyzed all along. The FEL here in this paper is a highly tapered one evolving through the exponential growth and then the post-saturation taper. Modes contents are analyzed for electron bunch with three different types of transverse distribution: flattop, Gaussian, and parabolic. The tapered FEL simulation is performed with Genesis code. The FEL photon beam transverse electric field is decom- posed with Gaussian-Laguerre polynomials. The evolutions of spot size, source location, and the portion of the power in the fundamental mode are discussed here. The approach can be applicable to various kind scheme of FEL.  
 
TUP030 Mode Component Evolution and Coherence Analysis in Terawatt Tapered FEL FEL, electron, undulator, radiation 446
 
  • K. Fang, S.D. Chen, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, USA
  • K. Fang
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  A fast and robust algorithm is developed to decompose FEL radiation field transverse distribution into a set of orthonormal basis. Laguerre Gaussian and Hermite Gaussian can be used in the analysis. The information of mode components strength and Gaussian beam parameters allows users in downstream better utilize FEL. With this method, physics of mode components evolution from starting stage, to linear regime and post saturation are studied with detail. With these decomposed modes, correlation function can be computed with less complexity. Eigenmodes of the FEL system can be solved using this method.  
 
TUP033 Broadly Tunable Free-Electron Laser for Four-wave Mixing Experiments with Soft X-ray Pulses electron, undulator, FEL, simulation 461
 
  • G. Marcus
    SLAC, Menlo Park, California, USA
  • G. Penn
    LBNL, Berkeley, California, USA
  • A. Zholents
    ANL, Argonne, Illinois, USA
 
  This paper examines a FEL design for the production of three soft x-ray pulses from a single electron beam suitable for four-wave mixing experiments. Independent control of the wavelength, timing and angle of incidence of the three ultra-short, ultra-intense pulses with exquisite synchronization is critical. A process of selective amplification where a chirped electron beam and a tapered undulator are used to isolate the gain region to only a short fraction of the electron beam is explored in detail. Numerical particle simulations are used to demonstrate the essential features of this scheme in the context of the LCLS-II design study.  
 
TUP042 High Efficiency Lasing with a Strongly Tapered Undulator undulator, electron, radiation, experiment 478
 
  • J.P. Duris, P. Musumeci
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOE grant DE-FG02-92ER40693, Defense of Threat Reduction Agency award HDTRA1-10-1-0073 and University of California Office of the President award 09-LR-04-117055-MUSP.
Typical electrical to optical energy conversion efficiencies for FELs are limited by the Pierce parameter to 10-3 or smaller. Undulator tapering schemes have enabled extraction of as much as 1 or 2% of the electron energy. Recently, the UCLA BNL helical inverse free electron laser (IFEL) experiment at ATF demonstrated energy doubling and acceleration of 30% of an electron beam from 52 to 93 MeV with a modest 1011 W power CO2 laser pulse. By reversing and retuning the undulator, the electrons may be violently decelerated, thereby transferring energy from the beam to the laser pulse. Simulations show that by sending a 1 kA, 70 MeV electron beam and 100 GW laser into a prebuncher and the reversed undulator, 41% of the electron beam energy should be converted to radiation, allowing the laser pulse power to grow to 127 GW.
 
 
TUP045 IFEL Driven Micro-Electro-Mechanical System Free Electron Laser undulator, electron, FEL, radiation 481
 
  • N.S. Sudar, J.P. Duris, P. Musumeci
    UCLA, Los Angeles, USA
 
  The Free Electron Laser has provided modern science with a tunable source of high frequency, high power, coherent radiation. To date, short wavelength FEL's have required large amounts of space in order to achieve the necessary beam energy to drive the FEL process and to reach saturation of the output radiation power. By utilizing new methods for beam acceleration as well as new undulator technology, we can decrease the space required to build these machines. In this paper, we investigate a scheme by which a tabletop XUV FEL might be realized. Utilizing the Rubicon Inverse Free Electron Laser (IFEL) at BNL together with micro-electro-mechanical system (MEMS) undulator technology being developed at UCLA, we propose a design for a compact XUV FEL.  
 
TUP047 Chirped Pulse Superradiant Free-electron Laser radiation, electron, undulator, FEL 489
 
  • Y.-C. Huang, C.H. Chen
    NTHU, Hsinchu, Taiwan
  • J. Wu, Z. Zhang
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by Ministry of Science and Technology under Contract NSC 102-2112-M-007-002-MY3
When a short electron bunch traverses an undulator and radiates a wavelength significantly longer than the bunch length, the electrons quickly loses energy through so-called superradiance and generate a negatively chirped radiation frequency at the output. In this paper, we develop a theory to describe this chirped-pulse radiation and numerically demonstrate pulse compression by using a quadratic phase filter. As a design example at THz, a photoinjector/linac system generates a 15 MeV electron bunch containing 15-pC charge in a 60-fs duration. The electrons radiate a chirped pulse at 2.5 THz from a 1.5 m long undulator with a period of 5.6 cm and undulator parameter of 1.7. By using a grating pair, the output THz field can be compressed from 27 to 3 cycles. As another example at EUV, a future dielectric laser accelerator [1] is assumed to generate a 100 MeV electron bunch containing 75-fC charge in 1-nm long length. The electrons radiate a chirped EUV pulse at 13.5 nm from a 15.8 cm long dielectric laser undulator [2] with a period of 1.05 mm and undulator field of 3.3 T. By using a quadratic phase filter as a pulse compressor, the peak power of the EUV radiation is increased from 0.7 to 10 kW.
*Y.C. Huang and R.L. Byer, Appl. Phys. Lett. 69 (15), (1996) 2185-2177.
**T. Plettner, R. L. Byer., Phys. Rev. ST Accel. Beams 11, (2008) 030704.
 
 
TUP060 Potential Photochemical Applications of the Free Electron Laser Irradiation Technique in Living Organisms FEL, experiment, radiation, electron 505
 
  • F. Shishikura, K. Hayakawa, Y. Hayakawa, M. Inagaki, K. Nakao, K. Nogami, T. Sakai, T. Tanaka
    LEBRA, Funabashi, Japan
  • T. Kii, H. Ohgaki, H. Zen
    Kyoto University, Kyoto, Japan
  • T. Sakae
    Nihon University School of Dentistry at Matsudo, Matsudo-shi, Japan
 
  In 2001, the Laboratory for Electron Beam Research and Application (LEBRA) achieved the first lasing of 0.9–6.5 microns near-infrared free electron lasers (FELs), in which higher harmonics were generated by using nonlinear optical crystals. Following this breakthrough, we have paid considerable attention to LEBRA-FEL’s potential for investigating photochemical reactions in living organisms. We have established a micro-irradiation technique using an optical fiber connected to a fine tapered glass rod of <5 microns in diameter, enabling FEL irradiation of a single cell and even the inner organelles of live cells. We then verified that visible LEBRA-FEL light can control the germination of lettuce seeds, a well-known photochemical reaction, and determined that red light (660 nm FEL) promotes germination and far-red light (740 nm FEL) inhibits it. Here, we summarize the efficiency of various visible wavelengths of LEBRA-FEL light, ranging from 0.4–0.8 microns, for regulating photoreactions in lettuce seeds and we also summarize the efficiency of infrared wavelengths up to 20 microns, which can be generated by combined use of the LEBRA-FEL and the Kyoto University FEL.
We thank the staff of Prof. T. Morii (Institute of Advanced Energy, Kyoto Univ.) for helpful assistance.
 
 
TUP064 Narrow Linewidth, Chirp-Control and Radiation Extraction Optimization in an Electrostatic Accelerator FEL Oscillator FEL, electron, radiation, wiggler 509
 
  • H. S. Marks, A. Gover, H. Kleinman, J. Wolowelsky
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • D. Borodin, M. Einat, M. Kanter, Y. Lasser, Yu. Lurie
    Ariel University Center of Samaria, Faculty of Engineering, Ariel, Israel
 
  In recent years the electrostatic accelerator FEL based in Ariel has undergone many upgrades. By varying the accelerating potential the resonator allows lasing between 95-110 GHz. It is now possible to remotely control the output reflectivity of the resonator and thereby vary both the power built up in the resonator and that emitted. This has allowed fine control over the power for different user experiments. A voltage ramping device has been installed at the resonator/wiggler to correct drops in voltage which occur due to electrons striking the walls of the beam line. This has allowed stable pulses of just over 50 μs with a chirp rate of ~80 kHz/μs.  
 
TUP070 Numerical Calculation of Diffraction Loss for Characterisation of a Partial Waveguide FEL Resonator FEL, simulation, electron, radiation 521
 
  • Q. Fu, B. Qin, P. Tan, K. Xiong, Y.Q. Xiong
    HUST, Wuhan, People's Republic of China
 
  Waveguide is widely used in long wavelength Free-Electron Lasers to reduce diffraction losses. In this paper the amplitude and phase transverse distribution of light emission produced in a partial-waveguide FEL resonator is calculated by Fresnel principle. To acquire high power out-coupled and optimize resonator structure of HUST THz-FEL, the characterisation of reflecting mirror is discussed to reduce diffraction loss.  
 
TUP072 Present Status of Coherent Electron Cooling Proof-of-principle Experiment electron, cavity, ion, gun 524
 
  • I. Pinayev, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, L. DeSanto, A. Elizarov, C. Folz, D.M. Gassner, H. Hahn, Y. Hao, C. Ho, Y. Huang, R.L. Hulsart, M. Ilardo, J.P. Jamilkowski, Y.C. Jing, F.X. Karl, D. Kayran, R. Kellermann, N. Laloudakis, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, F. Randazzo, T. Rao, J. Reich, T. Roser, J. Sandberg, B. Sheehy, J. Skaritka, K.S. Smith, L. Snydstrup, A.N. Steszyn, R. Than, C. Theisen, R.J. Todd, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, M. Wilinski, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by Stony Brook University and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The status of FEL-based Coherent Electron Cooling Proof-of-principle Experiment at BNL is presented. The experimental set-up is comprised of a 2 MeV CW SRF electron gun and 20 MeV CW SRF linac and 8-m long helical FEL amplifier. The status of the accelerator commissioning, and progress in the construction of the helical undulator at Budker INP, is also reported
 
 
TUP075 Commissioning Status of the ASTA Facility at Fermilab cryomodule, gun, cavity, diagnostics 537
 
  • A.H. Lumpkin, D.R. Broemmelsiek, D.J. Crawford, N. Eddy, D.R. Edstrom, E.R. Harms, A. Hocker, J.R. Leibfritz, J. Ruan, J.K. Santucci, G. Stancari, D. Sun, J.C.T. Thangaraj, R.M. Thurman-Keup, A. Warner, J. Zhu
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work at Fermilab supported by Fermi Research Alliance, LLC under Contract No. DE-AC02- 07CH11359 with the United States Department of Energy.
Early commissioning results and status of the Advanced Superconducting Test Accelerator (ASTA) at Fermilab will be described. The ASTA facility consists of an L-band rf photocathode (PC) gun, two superconducting L-band rf booster cavities, transport lines, and an 8-cavity TESLA style cryomodule. Early results include first photoelectrons from the Cs2Te photocathode and operations at 3-5 MeV from the rf PC gun. The beam line with one 4-dipole chicane, extensive diagnostics, and 50-MeV spectrometer are being installed. The base beam profile imaging stations have been equipped with both YAG:Ce scintillators and optical transition radiation (OTR) screens, optical transport, and with 5 Mpix digital CCD cameras using Gig-E readout. A set of rf BPMs, wall current monitors, and toroids are also being implemented. Transport of OTR to a C5680 Hamamatsu streak camera is also planned for longitudinal profile information at the picosecond level. Downstream of this location is the 8-cavity cryomodule in which most cavities have been operated at the targeted 31.5 MV/m gradient. Initial beam measurements at 20 MeV and updated cryomodule results will be presented as available.
 
 
TUP080 Towards an X-ray FEL at the MAX IV Laboratory FEL, linac, electron, gun 549
 
  • S. Werin, F. Curbis, M. Eriksson, C. Quitmann, S. Thorin
    MAX-lab, Lund, Sweden
  • P. Johnsson
    Lund University, Lund, Sweden
 
  The design of the 3 GeV linac for the MAX IV facility was done to provide the ability to host a future FEL in the hard X-ray as well as in the soft X-ray range. The linear accelerator, with its two bunch compressors, is now under commissioning. Through the years increasing details for the actual FEL have been discussed and presented. In parallel a steering group for the science case for a Swedish FEL has worked and engaged a large number of Swedish user groups. These two paths are now converging into a joint project to develop the concept of an FEL at MAX IV. We will report on the paths to FEL performance based on the 3 GeV injector, FEL design considerations, the scientific preparation of the project, the linac commissioning and the strategy and priorities.  
 
TUP081 Configuration and Status of the Israeli THz Free Electron Laser FEL, wiggler, electron, RF-structure 553
 
  • A. Friedman, N. Balal, V.L. Bratman, E. Dyunin, Yu. Lurie, E. Magori
    Ariel University, Ariel, Israel
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: This project is funded in part by Israel Ministry of Defense.
A THz FEL is being built in Ariel University. This project is a collaboration between Ariel University, and Tel Aviv University. Upon completion it is intended to become a user facility. The FEL is based on a compact photo cathode gun (60 cm) that will generate an electron beam at energies of 4.5 - 6.5 MeV. The pulses are planned to be of 300 pico Coulomb for a single pulse, and of up to 1.5 nano Coulomb for a train of pulses. The FEL is designed to emit radiation between 1 and 5 THz. It is planned to operate in the super radiance regime. The configuration of the entire system will be presented, as well as theoretical and numerical results for the anticipated output of the FEL, which is in excess of 150 KW instantaneous power. The bunching of the electron bean will be achieved by mixing two laser beams on the photo-cathode. The compression of the beam will be achieved be introducing an energy chierp to the beam and passing it through a helical chicane. We plan on compressing the single pulse to less than 150 femto seconds. The status of the project at the time of the conference will be presented.
 
poster icon Poster TUP081 [3.276 MB]  
 
TUP082 Coherent Harmonic Generation at the DELTA Storage Ring: Towards User Operation electron, radiation, undulator, experiment 556
 
  • A. Meyer auf der Heide, S. Hilbrich, H. Huck, M. Huck, M. Höner, S. Khan, C. Mai, R. Molo, H. Rast, A. Schick, P. Ungelenk
    DELTA, Dortmund, Germany
 
  Funding: Work supported by DFG, BMBF, FZ Jülich, and by the Land NRW.
At DELTA, a 1.5-GeV synchrotron light source at the TU Dortmund University, a short-pulse facility based on Coherent Harmonic Generation (CHG) is in operation and shall soon be used for pump-probe experiments. Due to the interaction of ultrashort laser pulses with electron bunches in an undulator, CHG provides short and coherent pulses at harmonics of the laser wavelength. In this paper, recent progress towards user operation, pulse characterization studies such as transverse and longitudinal coherence measurements as well as CHG in the presence of an RF phase modulation are presented.
 
 
TUP085 FERMI Status Report FEL, electron, experiment, operation 564
 
  • M. Svandrlik, E. Allaria, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, R. Cucini, I. Cudin, G. D'Auria, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W.M. Fawley, M. Ferianis, E. Ferrari, P. Finetti, L. Fröhlich, P. Furlan Radivo, G. Gaio, D. Gauthier, F. Gelmetti, L. Giannessi, M. Kiskinova, S. Krecic, M. Lonza, N. Mahne, C. Masciovecchio, M. Milloch, F. Parmigiani, G. Penco, L. Pivetta, O. Plekan, M. Predonzani, E. Principi, L. Raimondi, P. Rebernik Ribič, F. Rossi, L. Rumiz, C. Scafuri, C. Serpico, P. Sigalotti, C. Spezzani, C. Svetina, M. Trovò, A. Vascotto, M. Veronese, R. Visintini, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  FERMI, the seeded FEL located at the Elettra laboratory in Trieste, Italy, is now in regular operation for users with its first FEL line, FEL-1, which covers the wavelength range between 100 and 20 nm. We will give an overview of the typical operating modes of the facility for users and we will report on the status of beamlines and experimental stations. Three beamlines are now opened for users, three more are in construction. Meanwhile, the second FEL line of FERMI, FEL-2, a HGHG double stage cascade covering the wavelength range 20 to 4 nm is still under commissioning; we will report on the latest results in particular at the shortest wavelength, 4 nm in the fundamental.  
 
TUP086 Experiment Preparation Towards a Demonstration of Laser Plasma Based Free Electron Laser Amplification electron, undulator, FEL, free-electron-laser 569
 
  • M.-E. Couprie, C. Benabderrahmane, P. Berteaud, C. Bourassin-Bouchet, F. Bouvet, F. Briquez, L. Cassinari, L. Chapuis, M.E. El Ajjouri, C. Herbeaux, N. Hubert, M. Labat, A. Lestrade, A. Loulergue, J. Lüning, O. Marcouillé, J.L. Marlats, F. Marteau, C. Miron, P. Morin, F. Polack, K. Tavakoli, M. Valléau, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
  • I.A. Andriyash, G. Lambert, V. Malka, C. Thaury
    LOA, Palaiseau, France
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • X. Davoine
    CEA/DAM/DIF, Arpajon, France
 
  One direction towards compact Free Electron Laser is to replace the conventional linac by a laser plasma driven beam, provided proper electron beam manipulation to handle the value of the energy spread and of the divergence. Applying seeding techniques also enables to reduce the required undulator length. Rapidly developing Laser Wakefield Accelerators (LWFA) are already able to generate synchrotron radiation. With the presently achieved electron divergence and energy spread an adequate beam manipulation through the transport to the undulator is needed for FEL amplification. A test experiment for the demonstration of FEL amplification with a LWFA is under preparation in the frame of the COXINEL ERC contract in the more general context of LUNEX5. Electron beam transport follows different steps with strong focusing thanks to variable strength permanent magnet quadrupoles, demixing chicane with conventional dipoles, and a second set of quadrupoles for further focusing in the undulator. Progress on the equipment preparation and expected performance are described.  
 
TUP087 The Status of LUNEX5 Project electron, FEL, undulator, operation 574
 
  • M.-E. Couprie, C. Benabderrahmane, P. Berteaud, C. Bourassin-Bouchet, F. Bouvet, F. Briquez, L. Cassinari, L. Chapuis, J. Daillant, M. Diop, M.E. El Ajjouri, C. Herbeaux, N. Hubert, M. Labat, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, J.L. Marlats, C. Miron, P. Morin, A. Nadji, F. Polack, F. Ribeiro, J.P. Ricaud, P. Roy, K. Tavakoli, M. Valléau, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • B. Carré, D. Garzella
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
  • X. Davoine
    CEA/DAM/DIF, Arpajon, France
  • N. Delerue
    LAL, Orsay, France
  • G. Devanz, A. Mosnier
    CEA/DSM/IRFU, France
  • A. Dubois, J. Lüning
    CCPMR, Paris, France
  • C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • G. Lambert, R. Lehé, V. Malka, A. Rousse, C. Thaury
    LOA, Palaiseau, France
  • C. Madec
    CEA/IRFU, Gif-sur-Yvette, France
 
  LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating the production of short, intense, coherent Free Electron Laser (FEL) pulses in the 40-4 nm spectral range. It comprises a 400 MeV superconducting Linear Accelerator for high repetition rate operation (10 kHz), multi-FEL lines and adapted for studies of advanced FEL schemes, a 0.4 - 1 GeV Laser Wake Field Accelerator (LWFA) for its qualification by a FEL application, a single undulator line enabling seeding with High order Harmonic in Gas and echo configurations and pilot user applications. Concerning the superconducting linac, the electron beam dynamics has been modified from a scheme using a third harmonic linearizer and a compression chicane to dog-leg coupled to sextupoles. Besides, the choice of the gun is under revision for fulfilling to 10 kHz repetition rate. Following transport theoretical studies of longitudinal and transverse manipulation of a LWFA electron beam enabling to provide theoretical amplification, a test experiment is under preparation in collaboration with the Laboratoire d’Optique Appliquée towards an experimental demonstration.  
 
TUP088 Free Electron Lasers in 2014 FEL, electron, undulator, free-electron-laser 580
 
  • J. Blau, K. R. Cohn, W.B. Colson, W.W. Tomlinson
    NPS, Monterey, California, USA
 
  Funding: This work has been supported by the Office of Naval Research and the High Energy Laser Joint Technology Office.
Thirty-eight years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs in the infrared, visible, UV, and x-ray wavelength regimes are tabulated and discussed.
 
 
TUP095 Design of a Compact Light Source Accelerator Facility at IUAC, Delhi electron, gun, radiation, undulator 596
 
  • S. Ghosh, R.K. Bhandari, G.K. Chaudhari, D. Kanjilal, J. Karmakar, N. Kumar, A. Pandey, P. Patra, A. Rai, B.K. Sahu
    IUAC, New Delhi, India
  • A.S. Aryshev, J. Urakawa
    KEK, Ibaraki, Japan
  • A. Deshpande, T.S. Dixit
    SAMEER, Mumbai, India
  • V. Naik, A. Roy
    VECC, Kolkata, India
 
  Funding: * The project is supported jointly by Board of Research in Nuclear Sciences and Inter University Accelerator Center
The demand for a light source with high brightness and short pulse length from the researchers in the field of physical, chemical, biological and medical sciences is growing in India. To cater to the experimental needs of multidisciplinary sciences, a project to develop a compact Light Source at Inter University Accelerator Centre (IUAC) has been taken up. In the first phase of the project, prebunched [1] electron beam of ~ 8 MeV will be produced by a photocathode RF gun and coherent THz radiation will be produced by a short undulator magnet. In the second phase, the energy of the electron beam will be increased up to 50 MeV by two sets of superconducting niobium resonators. The coherent IR radiation will be produced by using an undulator magnet (conventional method) and X-rays by Inverse Compton Scattering. To increase the average brightness of the electromagnetic radiation, fabrication of superconducting RF gun is going to be started in a parallel development. In this paper the detailed design of the LSI accelerator complex as well as construction timetable will be presented. The physical principles of THz generation and major accelerator subsystems will be discussed.
[1] S. Liu & J.Urakawa, Proc. of FEL 2011, page-92
 
 
TUP097 Fast, Multi-band Photon Detectors based on Quantum Well Devices for Beam-monitoring in New Generation Light Sources detector, photon, monitoring, electron 600
 
  • T. Ganbold
    University of Trieste, School of Nanotechnology, Trieste, Italy
  • M. Antonelli, G. Cautero, R. Cucini, D.M. Eichert, W.H. Jark, R.H. Menk
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. Biasiol
    IOM-CNR, Trieste, Italy
 
  In order to monitor the photon-beam position for both diagnostics and calibration purposes, we have investigated the possibility to use InGaAs/InAlAs Quantum Well (QW) devices as position-sensitive photon detectors for Free-Electron Laser (FEL) or Synchrotron Radiation (SR). Owing to their direct, low-energy band gap and high electron mobility, such QW devices may be used also at Room Temperature (RT) as fast multi-band sensors for photons ranging from visible light to hard X-rays. Moreover, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. Segmented QW sensors have been preliminary tested with 100-fs-wide UV laser pulses and X-ray SR. The reported results indicate that these devices respond with 100-ps rise-times to ultra-fast UV laser pulses. Besides, X-ray tests have shown that these detectors are sensitive to beam position and exhibit a good efficiency in the collection of photo-generated carriers.  
 
TUC03 Generation of Optical Orbital Angular Momentum Using a Seeded Free Electron Laser FEL, electron, radiation, free-electron-laser 609
 
  • P. Rebernik Ribič, G. De Ninno, D. Gauthier
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: The research was in part funded by the TALENTS UP Programme (7th R&D Framework Programme, Specific Programme: PEOPLE - Marie Curie Actions - COFUND).
We propose an effective scheme for the generation of intense extreme-ultraviolet light beams carrying orbital angular momentum (OAM). The light is produced by a high-gain harmonic-generation free-electron laser (HGHG FEL), seeded using a laser pulse with a transverse staircase-like phase pattern. The transverse phase modulation in the seed laser is obtained by putting a phase-mask in front of the focusing lens, before the modulator. The staircase-like phase pattern is effectively transferred onto the electron beam in the modulator and the microbunching structure is preserved after frequency up-conversion in the radiator. During light amplification in the radiator, diffraction and mode selection drive the radiation profile towards a dominant OAM mode at saturation. With a seed laser at 260 nm, gigawatt power levels are obtained at wavelengths approaching those of soft x-rays. Compared to other proposed schemes to generate OAM with FELs, our approach is robust, easier to implement, and can be integrated into already existing FEL facilities without extensive modifications of the machine layout.
 
 
WEB02 Beam Operation of the PAL-XFEL Injector Test Facility gun, emittance, electron, cavity 615
 
  • J.H. Han, S.Y. Baek, M.S. Chae, H. J. Choi, T. Ha, J.H. Hong, J. Hu, W.H. Hwang, S.H. Jung, H.-S. Kang, C. Kim, C.H. Kim, I.Y. Kim, J.M. Kim, S.H. Kim, I.S. Ko, H.-S. Lee, J. Lee, S.J. Lee, W.W. Lee, C.-K. Min, G. Mun, D.H. Na, S.S. Park, S.J. Park, Y.J. Park, Y.G. Son, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The Pohang Accelerator Laboratory X-ray Free electron Laser (PAL-XFEL) project was launched in 2011. This project aims at the generation of X-ray FEL radiation in a range of 0.1 to 10 nm for photon users with a bunch repetition rate of 60 Hz. The machine consists of a 10 GeV normal conducting S-band linear accelerator and five undulator beamlines. The linac and two undulator beamlines will be constructed by the end of 2015 and first FEL radiation is expected in 2016. As a part of preparation for the project, an Injector Test Facility was constructed in 2012. Since December 2012, beam commissioning is being carried out to find optimum operating conditions and to test accelerator components including RF, laser, diagnostics, magnet, vacuum and control. We present the status of beam commissioning and components tests at the test facility.  
slides icon Slides WEB02 [10.249 MB]  
 
WEB03 European XFEL Construction Status photon, undulator, electron, diagnostics 623
 
  • W. Decking
    DESY, Hamburg, Germany
  • F. Le Pimpec
    XFEL. EU, Hamburg, Germany
 
  The European XFEL is presently constructed in the Hamburg region, Germany. It aims at producing X-rays in the range from 260 eV up to 24 keV out of three undulators that can be operated simultaneously with up to 27000 pulses/second. The FEL is driven by a 17.5 GeV linear accelerator based on TESLA-type superconducting accelerator modules. This paper presents the status of major components, the present project schedule and a summary of beam parameters that are adapted to the evolving needs of the users.  
slides icon Slides WEB03 [12.982 MB]  
 
WEB05 FLASH: First Soft X-ray FEL Operating Two Undulator Beamlines Simultaneously electron, operation, undulator, photon 635
 
  • K. Honkavaara, B. Faatz, J. Feldhaus, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH, the free electron laser user facility at DESY (Hamburg, Germany), has been upgraded with a second undulator beamline FLASH2. After a shutdown to connect FLASH2 to the FLASH linac, FLASH1 is back in user operation since February 2014. Installation of the FLASH2 electron beamline has been completed early 2014, and the first electron beam was transported into the new beamline in March 2014. The commissioning of FLASH2 takes place in 2014 parallel to FLASH1 user operation. This paper reports the status of the FLASH facility, and the first experience of operating two FEL beamlines.  
slides icon Slides WEB05 [2.481 MB]  
 
THA01 THz Streak Camera for FELTemporal Diagnostics: Concepts and Considerations electron, FEL, photon, free-electron-laser 640
 
  • P.N. Juranic, R. Abela, I. Gorgisyan, C.P. Hauri, R. Ischebeck, B. Monoszlai, L. Patthey, C. Pradervand, M. Radovic, L. Rivkin, V. Schlott, A.G. Stepanov
    PSI, Villigen PSI, Switzerland
  • I. Gorgisyan, C.P. Hauri, L. Rivkin
    EPFL, Lausanne, Switzerland
  • R. Ivanov, P. Peier
    DESY, Hamburg, Germany
  • J. Liu
    XFEL. EU, Hamburg, Germany
  • B. Monoszlai
    University of Pecs, Pécs, Hungary
  • K. Ogawa, T. Togashi, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Owada
    JASRI/RIKEN, Hyogo, Japan
 
  The accurate, non-destructive measurements of FEL pulse length and arrival time relative to an experimental laser are necessary for operators and users alike. The FEL operators can get a better understanding of their machine and the optics of an FEL by examining the pulse length changes of the photons coming to the user stations, and the users can use the arrival time and pulse length information to better understand their data. PSI has created the pulse arrival and length monitor (PALM) based on the THz-streak camera concept for measurement at x-ray FELs, meant to be used at the upcoming SwissFEL facility. The first results from the experimental beamtime at SACLA will be presented, showcasing the accuracy and reliability of the device. Further plans for improvement and eventual integration into SwissFEL will also be presented.  
slides icon Slides THA01 [5.798 MB]  
 
THB01 Simultaneous Measurement of Electron and Photon Pulse Duration at FLASH electron, photon, free-electron-laser, FEL 654
 
  • S. Düsterer
    DESY, Hamburg, Germany
 
  One of the most challenging tasks for extreme ultraviolet, soft and hard X-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. In a larger campaign nine different methods, which are able to determine such ultrashort photon pulse durations were compared at FLASH. Radiation pulses at a wavelength of 13.5 nm and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations and energy modulations of the electron bunch, and also direct methods like autocorrelation techniques, THz streaking or reflectivity changes of solid state samples.  
slides icon Slides THB01 [4.520 MB]  
 
THB02 Experimental Results of Diagnostics Response for Longitudinal Phase Space diagnostics, electron, radiation, free-electron-laser 657
 
  • F. Frei, V.R. Arsov, H. Brands, R. Ischebeck, B. Kalantari, R. Kalt, B. Keil, W. Koprek, F. Löhl, G.L. Orlandi, A. Saá Hernández, T. Schilcher, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  At SwissFEL, electron bunches will be accelerated, shaped, and longitudinally compressed by different radio frequency (RF) structures (S-, C-, and X-band) in combination with magnetic chicanes. In order to meet the envisaged performance, it is planned to regulate the different RF parameters based on the signals from numerous electron beam diagnostics. Here we will present experimental results of the diagnostics response on RF phase and field amplitude variations that were obtained at the SwissFEL Injector Test Facility.  
slides icon Slides THB02 [6.110 MB]  
 
THB03 Femtosecond-Stability Delivery of Synchronized RF-Signals to the Klystron Gallery over 1-km Optical Fibers timing, klystron, detector, experiment 663
 
  • J. Kim, K. Jung, J. Lim, J. Shin, H. Yang
    KAIST, Daejeon, Republic of Korea
  • H.-S. Kang, C.-K. Min
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work was supported by the PAL-XFEL Project and the National Research Foundation (Grant number 2012R1A2A2A01005544) of South Korea.
We present our recent progress in optical frequency comb-based remote optical and RF distribution system at PAL-XFEL. A 238 MHz mode-locked Er-laser is used as an optical master oscillator (OMO), which is stabilized to a 2.856 GHz RF master oscillator (RMO) using a fiber- loop optical-microwave phase detector (FLOM-PD). We partly installed a pair of 1.15 km long fiber links through a cable duct to connect and OMO room to a klystron gallery in the PAL-XFEL Injector Test Facility (ITF). The fiber links are stabilized using balanced optical cross- correlators (BOC). A voltage controlled RF oscillator (VCO) is locked to the delivered optical pulse train using the second FLOM-PD. Residual timing jitter and drift between the two independently distributed optical pulse train and RF signal is measured at the klystron gallery. The results are 6.6 fs rms and 31 fs rms over 7 hours and 62 hours, respectively. This is the first comb-based optical/RF distribution and phase comparison in the klystron gallery environment.
 
slides icon Slides THB03 [7.478 MB]  
 
THP003 Two Charges in the Same Bunch Train at the European XFEL simulation, operation, emittance, solenoid 678
 
  • Y.A. Kot, T. Limberg, I. Zagorodnov
    DESY, Hamburg, Germany
 
  The European XFEL has been initially designed for the operation with bunch charge of 1 nC (*) which was later extended down to 20 pC (**). An important upgrade of this extension might be the ability to operate different bunch charges in the same RF pulse. In this paper we assume the nominal design of the XFEL injector which means in particular that both charges in the same RF pulse experience the same solenoid field and are generated by the laser of the same rms size. We discuss the requirements which the combined working points of the injector have to fulfil and show the results of the complete start to end (S2E) and SASE simulations for the simultaneous operation of 250 pC and 500 pC bunch charges.
* DESY XFEL Project Group "The European X-Ray Free-Electron Laser. Technical Design Report" July 2007
** W. Decking and T. Limberg "European XFEL. Post-TDR Description" February 2013
 
 
THP004 Start-to-End Error Studies for FLUTE simulation, linac, timing, gun 682
 
  • M. Weber, A.-S. Müller, S. Naknaimueang, M. Schuh, M. Schwarz, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  FLUTE, a new linac based test facility and THz source, is currently under construction at the Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. With a repetition rate of 10 Hz, electron bunches with charges from 1 pC to 3 nC will be accelerated up to 40-50 MeV and then compressed longitudinally in a magnetic chicane to generate intense coherent THz radiation. Since the stability and repeatability of longitudinal bunch profiles are essential for optimum compression and THz radiation properties, simulation-based start-to-end error studies using the tracking code ASTRA have been performed to determine the influence of the machine elements on the bunches. Thus, critical parameters are identified and their respective tolerance ranges defined. In this contribution a summary of the error studies will be given.  
 
THP006 Optimization of the PITZ Photo Injector Towards the Best Achievable Beam Quality emittance, electron, cathode, flattop 685
 
  • M. Khojoyan, M. Krasilnikov, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: The work is supported by the German Federal Ministry of education and Research, project 05K10CHE and RFBR grant 13-02-91323.
Uniform 3D ellipsoids are proven to be the best distributions for high brightness charged particle beam applications due to the linear dependence of the space charge fields on the position within the distribution. Such electron bunches have lower emittance and are less sensitive to the machine settings and, therefore, should allow more reliable operation, which is one of the key requirements for single-pass free-electron lasers (FELs). The Photo Injector test facility at DESY, Zeuthen site (PITZ) is optimizing high brightness electron sources for linac based FELs such as the European XFEL. Recent measurements at PITZ using a photocathode laser with a flat-top temporal profile have revealed record low transverse emittance values at different bunch charges. As a next step towards the further improvement of the high quality beams, a cathode laser system, capable of producing quasi-3D ellipsoidal bunches is intended to be used at PITZ. In this work the beam dynamics optimization results for various bunch charges and for flat-top and 3D ellipsoidal cathode laser shapes are presented. For each working point the relative emittance growth is estimated due to possible deviations of the machine parameters.
 
 
THP007 Recent Electron Beam Optimization at PITZ emittance, electron, gun, cathode 689
 
  • G. Vashchenko, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, A. Oppelt, M. Otevřel, T. Rublack, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • G. Pathak
    Uni HH, Hamburg, Germany
  • D. Richter
    HZB, Berlin, Germany
 
  High brightness electron sources for linac based freee-lectron lasers operating at short wavelength such as FLASH and the European XFEL are characterized and optimized at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). In the last few years PITZ mainly was used to condition RF guns for their later operation at FLASH and the European XFEL. Only limited time could be spent for beam characterization. However, recently we have performed emittance measurements and optimization for a reduced gun accelerating gradient which is similar to the usual operation conditions at FLASH. The results of these measurements are presented in this paper.  
 
THP011 Beam Measurement of Photocathode RF-gun for PAL-XFEL emittance, electron, gun, solenoid 699
 
  • J.H. Hong, M.S. Chae, J.H. Han, H.-S. Kang, C.-K. Min, S.J. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  The Injector Test Facility (ITF) at Pohang Accelerator Laboratory (PAL) was constructed to develop an injector for the PAL X-ray free-electron laser (PAL-XFEL) project. The PAL-XFEL design requires the injector to produce an electron beam with a slice emittance of 0.4 mm-mrad at the charge of 200 pC. A 4-hole type RF-gun has been successfully fabricated and tested at ITF. In this paper we report the recent beam-measurement results using the RF-gun at ITF. Emittance measurements have been carried out by changing laser and RF parameters.  
 
THP018 The Seed Laser System for the Proposed VUV FEL Facility at NSRRC FEL, electron, radiation, undulator 718
 
  • M.C. Chou, N.Y. Huang, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
 
  The possibility of establishing a free electron laser facility in Taiwan has been a continuing effort at NSRRC in the past several years. The baseline design of the envisioned NSRRC FEL is a high gain harmonic generation (HGHG) FEL seeded by a 266 nm laser. The seed laser is produced by adding an optical parametric amplification (OPA) system pumped by upgrading the existing IR laser system. To provide broad tunability of the FEL radiation, the seed laser will be tunable. The spectrum considered for seeding the FEL is between 266 - 800 nm with peak power of 200 MW. The spatial and temporal overlap between the sub-100 fs electron bunch and the 100 fs UV seed laser is under study.  
poster icon Poster THP018 [0.152 MB]  
 
THP024 High-gradient Cathode Testing for MaRIE cathode, electron, gun, cavity 739
 
  • J.W. Lewellen, F.L. Krawczyk, N.A. Moody
    LANL, Los Alamos, New Mexico, USA
 
  X-ray free-electron lasers (X-FELs) provide unprecedented capabilities for characterizing and controlling matter at temporal, spatial and energetic regimes which have been previously inaccessible. The quality of the electron beam is critical to X-FEL performance; a degradation of beam quality by a factor of two, for instance, can prevent the X-FEL from lasing at all, rather than yielding a simple reduction in output power. While conceptual designs for new beam sources exist, they incorporate assumptions about the behavior of the photocathode, under extreme operating conditions. The combined requirements for high bunch charge, short bunch duration, and small emission area, dictate the use of high-efficiency photocathodes operating at electric field gradients of ~140 MV/m. No suitable cathode has been operated at these gradients, however, so the success of next-generation X-FELs rests on a series of untested assumptions. We present our plans to address these knowledge gaps, including the design of a high-gradient RF cavity specifically designed for testing cathodes under MaRIE-relevant conditions.  
 
THP025 Linear Accelerator Design for the LCLS-II FEL Facility linac, electron, undulator, FEL 743
 
  • P. Emma, J.C. Frisch, Z. Huang, H. Loos, A. Marinelli, T.J. Maxwell, Y. Nosochkov, T.O. Raubenheimer, L. Wang, J.J. Welch, M. Woodley
    SLAC, Menlo Park, California, USA
  • J. Qiang, M. Venturini
    LBNL, Berkeley, California, USA
  • A. Saini, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515.
The LCLS-II is an FEL facility proposed in response to the July 2013 BESAC advisory committee, which recommended the construction of a new FEL light source with a high-repetition rate and a broad photon energy range from 0.2 keV to at least 5 keV. A new CW 4-GeV electron linac is being designed to meet this need, using a superconducting (SC) L-band (1.3 GHz) linear accelerator capable of operating with a continuous bunch repetition rate up to 1 MHz at ~16 MV/m. This new 700-m linac is to be built at SLAC in the existing tunnel, making use of existing facilities and providing two separate FELs, preserving the operation of the existing FEL, which can be fed from either the existing copper or the new SC linac. We briefly describe the acceleration, bunch compression, beam transport, beam switching, and electron beam diagnostics. The high-power and low-level RF, and cryogenic systems are described elsewhere.
 
poster icon Poster THP025 [0.627 MB]  
 
THP030 Recent Photocathode R&D for the LCLS injector cathode, gun, emittance, vacuum 769
 
  • F. Zhou, A. Brachmann, W.J. Corbett, M.J. Ferreira, S. Gilevich, E.N. Jongewaard, J.R. Lewandowski, J. Sheppard, T. Vecchione, S. Vetter, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Funding: US DOE under contract No. DE-AC02-76SF00515
Systematic studies of the copper photocathodes identical to those used in the LCLS injector gun has been carried out at SLAC’s RF gun test facility. Recent observations at the gun test facility indicate that the pre-cleaning of the cathode prior to the installation in the gun is the major cause of the lower initial QE (~10-6) in the RF gun. All of four cathodes tested in the gun test facility have reliable higher initial QE, 4-8·10-5, with removal of pre-cleaning step. All of details will be described in the paper. A robust laser-assisted processing recipe has been developed. With this recipe, QE can be repeatedly evolved to about 1x10-4 within 3-4 weeks following the laser processing, and within 1-2 days the emittance is recovered to the values as observed prior to the laser processing. When compared to previous recipe used for the present LCLS cathode, the new recipe uses lower laser fluence and provides faster emittance recovery. Laser pointing stability is a key requirement for the success of the technique. This paper presents all details of the studies for four cathodes with over a few tens of laser-assisted spots and compares the results with the present LCLS cathode.
 
 
THP031 Further Understanding the LCLS Injector Emittance emittance, electron, collimation, radiation 774
 
  • F. Zhou, K.L.F. Bane, Y. Ding, Z. Huang, H. Loos
    SLAC, Menlo Park, California, USA
 
  Funding: US DOE under contract No. DE-AC02-76SF00515
Notable COTR effect from the LCLS laser heater chicane is recently observed at the LCLS injector OTR screen, used for routine emittance measurements. The emittance with the OTR screen is under-estimated by about 30% compared to the values with the wire scanner located next to the OTR screen. The emittance with the OTR and wire scanner is compared and relevant analyses are presented. Slice emittance upstream of the LCLS BC1 is measured using a traditional transverse cavity. Recently, slice emittance downstream of the BC1 is able to be measured with a newly developed technique, using a collimator located in the middle of the BC1. The parasitic effects of using the collimator for slice emittance measurement are evaluated. The slice emittance before and after the BC1 is compared. The dependence of the slice emittance on the linearizer’s transverse offset and CSR effect from the BC1 is discussed.
 
 
THP037 Beam Performance of the Photocathode Gun for the Max IV Linac gun, emittance, cathode, injection 799
 
  • J. Andersson, F. Curbis, D. Kumbaro, F. Lindau, S. Werin
    MAX-lab, Lund, Sweden
 
  The MAX IV facility in Lund (Sweden) is under construction and conditioning of the electron guns for the injector is ongoing. There are two guns in the injector, one thermionic gun for storage ring injection and one photocathode gun for the Short Pulse Facility. In this paper we report on the beam performance tests of the photocathode gun. The measurements were performed at the MAX IV electron gun test stand during spring 2014. Parameters that were studied includes quantum efficiency, emittance and emittance compensation. Results from the measurements are also compared to particle simulations done with ASTRA.  
 
THP039 Commissioning of the Photo-Cathode RF Gun at APS gun, cathode, solenoid, emittance 803
 
  • Y.-E. Sun, J.C. Dooling, R.R. Lindberg, A. Nassiri, S.J. Pasky, H. Shang, T.L. Smith, A. Zholents
    ANL, Argonne, Ilinois, USA
 
  A S-band RF gun is recently RF conditioned and commissioned at APS, Argonne. In this paper we report the high-power RF conditioning process of the gun. Dark currents are monitored during the RF conditioning and found to be less than 150pC. Following the RF conditioning, photo-electron beams are generated from the gun and the copper cathode quantum efficiency is monitored. We study the quantum efficiency as gun gradient varies and vacuum condition improves. Photo-electron beam enery and emittance are measured as RF gun gradient and solenoid, as well as drive-laser conditions are varied. Finally we compare our experimental results with numerical simulations.
Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
 
 
THP040 Status of Pump-probe Laser Development for the European XFEL controls, timing, software, hardware 807
 
  • L.-G. Wißmann, M. Emons, M. Kellert, K. Kruse, M. Lederer, G. Palmer, M. Pergament, G. Priebe, J. Wang, U. Wegner
    XFEL. EU, Hamburg, Germany
 
  The European XFEL is under construction and is designed to become a multi-user facility. Three SASE beam lines with two experimental areas each are foreseen to guarantee a high user throughput. In order to enable the full scientific potential of the facility, optical laser pulses for either pumping or probing samples will be deployed regularly. We are presenting the pump-probe laser concept and the current status of the development, showing some experimental results of the prototype laser, achieved to date. The main emphasis of the presentation lies on the integration of the laser system into Karabo, the emerging control system of the European XFEL.  
 
THP041 Development of All-metal Stacked-double Gate Field Emitter Array Cathodes for X-ray Free-electron Laser Applications electron, emittance, collimation, resonance 811
 
  • S. Tsujino, H.-H. Braun, P. Das Kanungo, V. Guzenko, C. Lee, Y. Oh, M. Paraliev
    PSI, Villigen PSI, Switzerland
  • T. Feurer
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work was partially supported by the Swiss National Science Foundation Nos. 200020143428 and 2000021147101.
We report the design, fabrication, and characterization of all-metal stacked-double-gate field emitter array (FEA) cathodes as a potential upgrade option of SwissFEL cathode at the Paul Scherrer Institute. Single-gate FEAs have demonstrated stable operation and gated field emission in pulsed diode gun with gradient up to 30 MV/m with pulse duration down to 200 ps and generation of 5 pC electron bunches by near infrared laser-induced field emission. However for high brightness applications it is crucial to reduce the beam divergence of individual beamlet by a suitable double-gate structure. The challenge lies in suppressing the concomitant decrease of the emission current when a negative focusing potential is applied to the second gate. To solve this problem, a stacked-double-gate FEAs with large collimation gate aperture diameter has been proposed. The intrinsic transverse emittance evaluated from a beam measurement for 1 mm-diameter FEA was below 0.1 mm-mrad. Compatibility with neon-gas conditioning to improve the beam uniformity and high emission current with double-gate FEAs were also demonstrated recently. The current research is focusing on the combination of the surface-plasmon-polariton resonance of the gate electrode and the near infrared laser-induced field emission to realize an ultrafast and ultrabright FEA cathode.
 
 
THP042 The LCLS-II Injector Design gun, cathode, emittance, cavity 815
 
  • J.F. Schmerge, A. Brachmann, D. Dowell, A.R. Fry, R.K. Li, Z. Li, T.O. Raubenheimer, T. Vecchione, F. Zhou
    SLAC, Menlo Park, California, USA
  • A.C. Bartnik, I.V. Bazarov, B.M. Dunham, C.M. Gulliford, C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Filippetto, R. Huang, C. F. Papadopoulos, G.J. Portmann, J. Qiang, F. Sannibale, S.P. Virostek, R.P. Wells
    LBNL, Berkeley, California, USA
  • A. Lunin, N. Solyak, A. Vivoli
    Fermilab, Batavia, Illinois, USA
 
  The new LCLS-II project will construct a 4 GeV continuous wave (CW) superconducting linear accelerator to simultaneously feed two undulators which will cover the spectral ranges 0.2-1.2 keV and 1-5 keV, respectively. The injector must provide up to 300 pC/bunch with a normalized emittance < 0.6 mm and peak current > 30 A at up to 1 MHz repetition rate. An electron gun with the required brightness at such high repetition rate has not yet been demonstrated. However, several different options have been explored with results that meet or exceed the performance requirements of LCLS-II. The available technologies for high repetition-rate guns, and the need to keep dark current within acceptable values, limit the accelerating gradient in the electron gun. We propose a CW normal conducting low frequency RF gun for the electron source due to a combination of the simplicity of operation and the highest achieved gradient in a CW gun, potentially allowing for lower beam emittances. The high gradient is especially significant at the 300 pC/bunch charge where beam quality can suffer due to space charge. This paper describes the design challenges and presents our solutions for the LCLS-II injector.  
 
THP045 Development of Photocachode Drive Laser System for RF Guns in KU-FEL FEL, gun, electron, target 828
 
  • H. Zen, T. Kii, H. Ohgaki, S. Suphakul
    Kyoto University, Kyoto, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Ibaraki, Japan
 
  Funding: This research was supported by ZE Research Program, IAE, Kyoto University (ZE26A-22).
We have been developing an accelerator based infrared light sources at Institute of Advanced Energy, Kyoto University. An MIR-FEL has been developed* and a THz-FEL is under development**. A thermionic RF gun has been used as the electron source of MIR-FEL. A project of photocathode upgrade of the current thermionic RF gun is now undergoing to increase the peak power of the FEL. We need to develop multi-bunch laser for this purpose. On the other hand, the THz-FEL will be a single-pass FEL using an S-band 1.6-cell photocathode RF gun. For this purpose, a single-bunch laser is enough. A photocathode drive laser system for those purposes has been developed. The laser system consists of an Nd:YVO4 mode-locked oscillator with an integrated AOM, a laser pointing stabilizer, two diode pumped Nd:YAG amplifiers, and harmonic generators. In case of single-bunch operation of the laser, the pulse energy of higher than 150 micro-J at 266 nm has been obtained. For multi-bunch operation, 70 micro-J/micro-pulse and 70 pulses have been obtained. Optimization for multi-bunch operation of the laser is under going. In the conference, status of development of the drive laser will be presented.
*H. Zen, et al., Infrared Physics & Technology, vol. 51, pp.382-385 (2008).
**S. Suphakul, et al., in this conference.
 
 
THP046 Cu and Cs2Te Cathodes Preparation and QE History at the SwissFEL Injector Test Facility. cathode, operation, gun, vacuum 832
 
  • J. Bossert, R. Ganter, M. Schaer, T. Schietinger
    PSI, Villigen PSI, Switzerland
 
  The installation of a load-lock chamber attached to the SwissFEL gun gives the possibility to carefully prepare the metallic cathodes under vacuum and also to use semiconductor cathodes like Cs2Te cathodes which cannot be transported through air. The paper presents the preparation procedures used for copper (QE>1.e-4) and Cs2Te cathodes (based on a CERN recipe) together with surface analysis results (SEM, EDX, interferometry, microscopy). Finally, the QE evolutions obtained in the SwissFEL Injector test facility as well as in a test stand are discussed for both materials.  
 
THP047 Photoemission Studies of Niobium and Lead Photocathodes Using Picosecond UV Laser niobium, cathode, gun, SRF 836
 
  • R. Xiang, A. Arnold, P.N. Lu, P. Murcek, J. Teichert, H. Vennekate
    HZDR, Dresden, Germany
  • R. Barday
    HZB, Berlin, Germany
 
  Funding: We acknowledge the support of Enhanced European Coordination for Accelerator Research & Development (EuCARD2, WP12), and the support of German Federal Ministry of Education and Research grant 05K12CR1.
We present the results of our investigations on superconducting photocathodes for supercondcuting rf injectors. Bulk niobium and lead film on niobium have been considered as the best candidates. The quantum efficiency (QE) at room temperature has been measured with 258 nm UV laser pulses of 14 ps duration. A QE of 10-4 has been obtained for the lead film. In order to improve the photoemission yield of niobium, new treatment methods, like Cs-activation and implantation with alkali metals, have been applied and the results are reported.
 
 
THP048 Formation of the Electron Bunch Longitudinal Profile for Coherent Electron Cooling Experiment electron, cavity, gun, experiment 840
 
  • I. Pinayev, D. Kayran, V. Litvinenko
    BNL, Upton, Long Island, New York, USA
 
  Proof-of-princilpe experiment of the coherent electron cooling is ongoing at Brookhaven National Lab. CeC mechanism utilizes amplification of density modulation, induced by hadrons, by an FEL structure. To fully utilize electron beam cooling capacity we need uniform longitudinal beam profile. In this paper we present two frequency injector system tuned for this requirement.  
 
THP049 High Power RF Test and Analysis of Dark Current in the SwissFEL-gun gun, cathode, solenoid, vacuum 843
 
  • P. Craievich, S. Bettoni, M. Bopp, A. Citterio, C. Ozkan, M. Pedrozzi, J.-Y. Raguin, M. Schaer, A. Scherer, T. Schietinger, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  To fulfill the beam quality and operational requirements of the SwissFEL project, currently under construction at the Paul Scherrer Institut, a new RF photocathode gun for the electron source was designed and manufactured in house. A 2.6 cell S-band gun operating with near-perfect rotationally symmetric RF field was designed to operate with a 100MV/m cathode field at a repetition rate of 100Hz with average power dissipation of 0.9kW with pulse duration of 1us. The first SwissFEL-gun is now fabricated and installed in the SwissFEL Injector Test Facility (SITF). The frequency spectrum and field balance, through bead-pulling, have been directly verified in-situ and then the gun has been operated with high-power RF. The results of bead-pull measurements and high-power tests are presented and discussed. In addition the emitted dark current was also measured during the high-power tests and the charge within the RF pulse was measured as a function of the peak cathode field at different pulse durations. Faraday cup data were taken for cathode peak RF fields up to 100MV/m for the case of a diamond-turned polycrystalline copper cathode.  
 
THP059 The Laser Heater System of SwissFEL undulator, electron, emittance, operation 871
 
  • M. Pedrozzi, M. Calvi, R. Ischebeck, S. Reiche, C. Vicario
    PSI, Villigen PSI, Switzerland
  • B.D. Fell, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Short wavelength FELs are generally driven by high-brilliance photo-cathode RF-guns which generate electron beams with an uncorrelated energy spread on the order of 1 keV or less. These extremely cold beams can easily develop micro-bunching instabilities caused by longitudinal space charge forces after the compression process. This can result in a blow up of the energy spread and emittance beyond the tolerable level for SASE emission. It has been demonstrated theoretically and experimentally [1] that a controlled increase of the uncorrelated energy spread to typically a few keV is sufficient to strongly reduce the instability growth. In the laser heater system, one achieves a controlled increase of the beam energy spread by a resonant interaction of the electron beam with a transversally polarized laser beam inside of an undulator magnet. The momentum modulation resulting from the energy exchange within the undulator is consequently smeared out in the transmission line downstream of the laser heater system. In SwissFEL, the laser heater system is located after the first two S-band accelerating structures at a beam energy of 150 MeV. This paper describes the layout and the sub-components of this system.
[1] Z. Huang, et al, Phys. Rev. Special Topics – Accelerator and beams 13, 020703 (2010)
 
 
THP060 Design of a Spatio-temporal 3-D Ellipsoidal Photo Cathode Laser System for the High Brightness Photo Injector PITZ electron, cathode, simulation, photon 878
 
  • T. Rublack, J.D. Good, M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: German Federal Ministry of education and Research, project 05K10CHE “Development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses” and RFBR grant 13-02-91323.
Minimized emittance is crucial for improved operation of linac-based free electron lasers. Simulations have thus shown 3-D ellipsoidal photocathode laser pulses are superior to the standard Gaussian or cylindrical laser pulses in this manner. Therefore, in collaboration with the Joint Institute of Nuclear Research (JINR, Dubna, Russia) and the Photo Injector Test facility at DESY, Zeuthen (PITZ), a prototype system capable of producing spatio-temporal 3-D ellipsoidal pulses has been constructed at the Institute of Applied Physics (IAP, Nizhny Novgorod, Russia). The system consists of a dual-output, 1030 nm fiber laser coupled with disc amplifiers, a scheme based on Spatial Light Modulators for spatial and temporal pulse shaping of the primary output, a cross-correlator set up utilizing the secondary output to characterize the primary output, and finally frequency conversion to the UV. A preliminary, temporal ellipsoidal shaped IR pulse has been observed and measured so far at IAP RAS. As of writing, improvements and refinements of the system are ongoing and it is expected to replicate the finalized prototype at PITZ soon.
 
 
THP061 Commissioning of an Improved Superconducting RF Photo Injector at ELBE gun, SRF, cavity, solenoid 881
 
  • J. Teichert, A. Arnold, M. Freitag, P.N. Lu, P. Michel, P. Murcek, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • P. Kneisel
    JLab, Newport News, Virginia, USA
  • I. Will
    MBI, Berlin, Germany
 
  In order to produce high-brightness electron beams in a superconducting RF photo injector, the most important point is to reach a high acceleration field in the cavity. For this reason two new 3.5-cell niobium cavities were fabricated, chemically treated and cleaned in collaboration with Jlab. The first of these two cavities was shipped to HZDR and assembled in a new cryomodule. This new gun (SRF Gun II) was installed in the ELBE accelerator hall in May 2014 and replaces the previous SRF Gun I. Beside the new cavity the ELBE SRF gun II differs from the previous gun by the integration of a superconducting solenoid. The paper presents the results of the first test run with a Cu photocathode.  
 
THP069 Performance Study of High Bandwidth Pickups Installed at FLASH and ELBE for Femtosecond-Precision Arrival Time Monitors pick-up, electron, operation, experiment 893
 
  • M.K. Czwalinna, C. Gerth, H. Schlarb, C. Sydlo
    DESY, Hamburg, Germany
  • A. Angelovski, R. Jakoby, A. Penirschke
    TU Darmstadt, Darmstadt, Germany
  • M. Gensch, M. Kuntzsch
    HZDR, Dresden, Germany
  • M. Kuntzsch
    TU Dresden, Dresden, Germany
  • T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  At today's free-electron lasers, high-resolution electron bunch arrival time measurements have become increasingly more important in fast feedback systems for a timing jitter reduction down to the femtosecond level as well as for time-resolved pump-probe experiments. This is fulfilled by arrival time monitors which employ an electro-optical detection scheme by means of synchronised ultrashort laser pulses. Even more, at FLASH and the European XFEL the measurement has to cover a wide range of bunch charges from 1 nC down to 20 pC with equally sub-10 fs resolution. To meet these requirements, recently a high bandwidth pickup electrode with a cut-off frequency above 40 GHz has been developed. These pickups are installed at the macro-pulsed SRF accelerator of the free-electron laser FLASH and at the macro-pulsed continuous wave SRF accelerator ELBE. In this paper we present an evaluation of the pickup performance by direct signal measurements with high bandwidth oscilloscopes and by use of the electro-optical arrival time monitor.  
 
THP076 Measurements of the Timing Stability at the FLASH1 Seeding Experiment electron, experiment, timing, FEL 913
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach, M. Wieland
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, H. Dachraoui, N. Ekanayake, B. Faatz, M. Felber, K. Honkavaara, T. Laarmann, J.M. Mueller, H. Schlarb, S. Schreiber, S. Schulz
    DESY, Hamburg, Germany
  • G. Angelova Hamberg
    Uppsala University, Uppsala, Sweden
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • P.M. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm, Sweden
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4 and 05K13PE3 and the German Research Foundation programme graduate school 1355.
For seeding of a free-electron laser, the spatial and temporal overlap of the seed laser pulse and the electron bunch in the modulator is critical. To establish the temporal overlap, the time difference between pulses from the seed laser and spontaneous undulator radiation is reduced to a few pico-seconds with a combination of a photomultiplier tube and a streak camera. Finally, for the precise overlap the impact of the seed laser pulses on the electron bunches is observed. In this contribution, we describe the current experimental setup, discuss the techniques applied to establish the temporal overlap and analyze its stability.
 
 
THP080 A Low-Cost, High-Reliability Femtosecond Laser Timing System for LCLS timing, controls, software, cavity 917
 
  • K. Gumerlock, J.C. Frisch, B.L. Hill, J. May, D.J. Nelson, S.R. Smith
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by DOE Contract DE-AC02-76-SF00515
LCLS has developed a low-cost, high-reliability radio-frequency-based locking system which provides phase locking with sub-25-femtosecond jitter for the injector and experiment laser systems. This system does not add significantly to the X-ray timing jitter from the accelerator RF distribution. The system uses heterodyne RF locking at 3808 MHz with an I/Q vector phase shifter and variable event receiver triggers to control the timing of the emission of the amplified laser pulse. Controls software provides full automation with a single process variable to control the laser timing over a 600 microsecond range with up to 4 femtosecond resolution, as well as online diagnostics and automatic error correction and recovery. The performance of this new locking system is sufficient for experiments with higher-precision timing needs that use an X-ray/optical cross-correlator to record relative photon arrival times.
 
 
THP082 Measurements of Compressed Bunch Temporal Profile using Electro-Optic Monitor at SITF electron, vacuum, diagnostics, optics 922
 
  • Ye. Ivanisenko, V. Schlott
    PSI, Villigen PSI, Switzerland
  • P. Peier
    DESY, Hamburg, Germany
 
  Funding: The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n.°290605 (PSI-FELLOW/COFUND)
The SwissFEL Injector Test Facility (SITF) is an electron linear accelerator with a single bunch compression stage at Paul Scherrer Institute (PSI) in Switzerland. Electro-optic monitors (EOMs) are available for bunch temporal profile measurements before and after the bunch compressor. The profile reconstruction is based upon spectral decoding technique. This diagnostic method is non-invasive, compact and cost-effective. It does not have high resolution and wide dynamic range of an RF transverse deflecting structure (TDS), but it is free of transverse beam size influence, what makes it a perfect tool for fast compression tuning. We present results of EOM and TDS measurements with down to 150 fs long bunches after the compression stage at SITF.
 
 
THP084 Longitudinal Diagnostics of RF Electron Gun using a 2-cell RF Deflector electron, gun, cavity, experiment 929
 
  • M. Nishiyama, K. Sakaue, T. Takahashi, T. Toida, M. Washio
    Waseda University, Tokyo, Japan
  • T. Takatomi, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by JSPS Grant-in-Aid for Scientific Research (A) 10001690 and the Quantum Beam Technology Program of MEXT.
We have been studying a compact electron accelerator based on an S-band Cs-Te photocathode rf electron gun at Waseda University. We are using this high quality electron bunch for many application researches. It is necessary to measure the bunch length and temporal distribution for evaluating application researches and for improving an rf gun itself. Thus we adopted the rf deflector system. It kicks the electron bunch with resonated rf electromagnetic field. Using this technique, the longitudinal distribution is mapped into the transverse space. The rf deflector has a 2-cell standing wave π-mode structure, operating in TM120 dipole mode at 2856 MHz. It provides a maximum vertical kick of 1.00MV with 750 kW input rf-power which is equivalent to the temporal resolution of around 58 femtoseconds bunch length. In this conference, we report the details of our rf deflector, the latest progress of longitudinal phase space diagnostics and future prospective.
 
 
THP085 Commissioning and Results from the Bunch Arrival-time Monitor Downstream the Bunch Compressor at the SwissFEL Test Injector pick-up, cavity, diagnostics, timing 933
 
  • V.R. Arsov, M. Aiba, M.M. Dehler, F. Frei, S. Hunziker, M.G. Kaiser, A. Romann, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  A high bandwidth Bunch Arrival-Time Monitor has been commissioned at the Swiss FEL test injector. A new acquisition front end allowing utilization of the ADC full dynamic range has been implemented. The resolution is measured as a function of the charge for different EOM front-ends. Downstream the magnetic chicane the bunch arrival time is sensitive to the amplitude and phases of the RF structures, responsible for creation of an energy chirp, used for bunch compression, as well as the ones of the harmonic cavity, used for phase space linearization. The time of flight as a function of the angle of the magnetic chicane has also been measured.  
 
THP090 Femtosecond Timing Distribution for the European XFEL timing, status, operation, FEL 945
 
  • C. Sydlo, M.K. Czwalinna, M. Felber, C. Gerth, T. Lamb, H. Schlarb, S. Schulz, F. Zummack
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Accurate timing synchronization on the femtosecond timescale is an essential installation for time-resolved experiments at free-electron lasers (FELs) such as FLASH and the upcoming European XFEL. To date the required precision levels can only be achieved by a laser-based synchronization system. Such a system has been successfully deployed at FLASH and is based on the distribution of femtosecond laser pulses over actively stabilized optical fibers. Albeit its maturity and proven performance this system had to undergo a major redesign for the upcoming European XFEL due to the enlarged number of stabilized optical fibers and an increase by a factor of up to 10 in length. The experience and knowledge gathered from the operation of the optical synchronization system at FLASH has led to an elaborate and modular precision instrument which can stabilize polarization maintaining fibers for highest accuracy as well as economic single mode fibers for shorter lengths. This paper reports on the laser-based synchronization system focusing on the active fiber stabilization units for the European XFEL, discusses major complications, their solutions and and the most recent performance results.  
 
THP095 Evolvement of the Laser and Synchronization System for the Shanghai DUV-FEL Test Facility electron, FEL, experiment, free-electron-laser 960
 
  • B. Liu, L. Feng, T. Lan, X.Q. Liu, D. Wang, X.T. Wang, W.Y. Zhang, S.P. Zhong
    SINAP, Shanghai, People's Republic of China
 
  Funding: supported by the National Natural Science Foundation of China (Grant No. 11175241)
Many attractive experiments including HGHG, EEHG, cascaded HGHG, chirped pulse amplification etc. are carried out or planned on the Shanghai Deep Ultra-Violet Free Electron Laser test facility. These experiments are all utilizing a laser as seed, and need precise synchronization between the electron beam and the laser pulse. We will describe the history and current status of the seeding and synchronization scheme for the SDUV-FEL together with some related experiment results in this paper.
 
 
THP097 Longitudinal Response Matrix Simulations for the SwissFEL Injector Test Facility diagnostics, simulation, electron, free-electron-laser 964
 
  • Á. Saá Hernández, F. Frei, R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • B. Beutner
    DESY, Hamburg, Germany
 
  The Singular Value Decomposition (SVD) method has been applied to the SwissFEL Injector Test Facility to identify and better expose the various relationships among the possible jitter sources affecting the longitudinal phase space distribution and the longitudinal diagnostic elements that measure them. To this end, several longitudinal tracking simulations have been run using the Litrack code. In these simulations the RF and laser jitter sources are varied one-by-one within a range spanning twice their expected stability. The particle distributions have been dumped at the diagnostic locations and the measured quantities analyzed. A matrix has been built by linearly fitting the response of each measured quantity to each jitter source. This response matrix is normalized to the jitter source stability and the instrumentation accuracy, and it is inverted and analyzed using SVD. From the eigenvalues and eigenvectors the sensitivity of the diagnostics to the jitters can be evaluated and their specifications and locations optimized.  
 
THC02 Thermal Emittance Measurements at the SwissFEL Injector Test Facility emittance, cathode, gun, electron 970
 
  • E. Prat, S. Bettoni, H.-H. Braun, M.C. Divall, R. Ganter, C.P. Hauri, T. Schietinger, A. Trisorio, C. Vicario
    PSI, Villigen PSI, Switzerland
  • C.P. Hauri
    EPFL, Lausanne, Switzerland
 
  In a laser-driven RF-gun the ultimate limit of the beam emittance is the transverse momentum of the electrons as they exit the cathode, the so-called intrinsic or thermal emittance. In this contribution we present measurements of the thermal emittance at the SwissFEL Injector Test Facility for electron beam charges down to a few tens of fC. We have studied the thermal emittance and QE dependence on the laser wavelength, the RF-gun gradient and the cathode material (Cu and Cs2Te).  
slides icon Slides THC02 [1.063 MB]  
 
FRA02 Wave-Mixing Experiments with Multi-colour Seeded FEL Pulses experiment, FEL, polarization, photon 985
 
  • F. Bencivenga, A. Battistoni, F. Capotondi, R. Cucini, M.B. Danailov, G. De Ninno, M. Kiskinova, C. Masciovecchio
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The extension of wave-mixing experiments in the extreme ultraviolet (EUV) and x-ray spectral range represents one of the major breakthroughs for ultrafast x-ray science. Essential prerequisites to develop such kind of non-linear coherent methods are the strength of the input fields, comparable with the atomic field one, as well as the high temporal coherence and stability of the photon source(s). These characteristics are easily achievable by optical lasers. Seeded free-electron-lasers (FELs) are similar in many respects to conventional lasers, hence calling for the development of wave-mixing methods. At the FERMI seeded FEL facility this ambitious task is tackled by the TIMER project, which includes the realization of a dedicated experimental end-station. The wave-mixing approach will be initially used to study collective atomic dynamics in disordered systems and nanostructures, through transient grating (TG) experiments. However, the wavelength and polarization tunability of FERMI, as well as the possibility to radiate multi-colour seeded FEL pulses, would allow to expand the range of possible scientific applications.  
slides icon Slides FRA02 [7.731 MB]  
 
FRA04 Optimization of High Average Power FEL Beam for EUV Lithography Application FEL, electron, plasma, optics 990
 
  • A. Endo, K. Sakaue, M. Washio
    Waseda University, Tokyo, Japan
  • H. Mizoguchi
    Gigaphoton Inc, Hiratsuka, Kanagawa, Japan
 
  Extreme Ultraviolet Lithography (EUVL) is realized with 100W plasma EUV source at 13.5nm. It is recommended by the EUVL community to evaluate an alternative approach based on high repetition rate FEL, to avoid the power limit of the plasma source. Several papers discuss on the possibility to realize superconducting FEL to generate multiple kW 13.5nm light. We must notice that the present SASE FEL pulse has higher beam fluence than the resist ablation threshold*, and high spatial coherence which results in speckle patterns, and random longitudinal mode beat which leads to high peak powerμspikes. An expanding mirror is installed after the undulator to reduce the beam fluence, external-seeding configuration is employed to reduce the longitudinal mode beat, and total reflection beam homogenizer is used for spatial mode mixing. Pulse repetition rate is more than 3MHz to cancel the speckle patter formation by averaging illumination. This paper discusses on the lowest risk approach to construct a prototype to demonstrate a high average power 13.5nm FEL for the best optimization in EUVL application, including the scaling to 6.7nm wavelength.
*J. Chalupský, L. Juha et.al, “Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids”, OPTICS EXPRESS 15, 6036 (2007)
 
slides icon Slides FRA04 [1.413 MB]  
 
FRB04 Divergence Reduction and Emittance Conservation in a Laser Plasma Acceleration Stage plasma, emittance, acceleration, extraction 999
 
  • A.R. Maier, I. Dornmair
    CFEL, Hamburg, Germany
  • K. Flöttmann
    DESY, Hamburg, Germany
 
  Plasma accelerators promise a compact source of highly relativistic electron beams. Driven by high-intensity lasers or high-energetic electron beams, the longitudinal and transverse electric fields inside the plasma cavitiy support the generation of GeV electron beams over m-scale distances, while measured emittances on the order of 0.1 mm.mrad have been reported from plasma-driven accelerators. However, it remains challenging to conserve this excellent emittance when coupling from the plasma into vacuum and a subsequent beam optics, especially when considering the large energy spread, typically accumulated during the off-crest acceleration inside the plasma. Recently, we presented an analytical solution [1] to describe an adiabatic matching from the plasma into vacuum. Further elaborating this concept [2], we will discuss the generation of low-divergence electron beams from a tailored plasma target in order to preserve the emittance generated within the plasma. We will apply our concept to an externally injected electron bunch, that is matched in and out of a tailored plasma target, generating a GeV-level electron beam with low divergence and good emittance.
* K. Floettmann, Phys. Rev. ST - Accel. Beams 17, 054402 (2014)
** I. Dornmair, K. Floettmann, and A. R. Maier, submitted (2014)