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Abstract
The problem of an efficiency increase of an FEL ampli-

fier is now of great practical importance. Technique of un-
dulator tapering in the post-saturation regime is used at the
existing x-ray FELs LCLS and SACLA, and is planned for
use at the European XFEL, Swiss FEL, and PAL XFEL.
There are also discussions on the future of high peak and av-
erage power FELs for scientific and industrial applications.
In this paper we perform detailed analysis of the tapering
strategies for high power seeded FEL amplifiers. Applica-
tion of similarity techniques allows us to derive universal
law of the undulator tapering.

INTRODUCTION
Efficiency of FEL amplifier with untapered undulator is

defined by the value of the FEL parameter ρ. Application
of the undulator tapering [1] allows to increase conversion
efficiency to rather high values. In the framework of the
one-dimensional theory the status of the problem of taper-
ing has been settled, and it is generally accepted that op-
timum law of the undulator tapering is quadratic with the
linear correction for optimization of the particle’s capture
in the decelerating potential [2–7]. Similar physical situa-
tion occurs in the FEL amplifier with waveguide with small
waveguide parameter. In this case radiation is confined with
the waveguide. Physical parameters of FEL amplifiers op-
erating in infrared, visible, and x-ray wavelength range are
such that these devices are described in the framework of
three dimensional theory with an “open” electron beam, i.e.
physical case of pure diffraction in a free space. In this case
diffraction of the radiation is essential physical effect influ-
encing optimization of the tapering process. Discussions
and studies on optimum law of the undulator tapering in
3D case are in the progress for more than 20 years. Our
previous studies were mainly driven by occasional calcula-
tions of perspective FEL systems for high power scientific
(for instance, FEL based γγ - collider ) and industrial ap-
plications (for instance, for isotope separation, and lithogra-
phy [8–10]). New wave of interest to the undulator tapering
came with x-ray free electron lasers. It is used now not only
as demonstration tool [11], but as a routine tool at operating
x-ray FEL facilities LCLS and SACLA.

During an intermediate physical discussion on the sub-
ject of tapering we pointed out that asymptotical law of
the undulator tapering for FEL amplifier with “open” beam
should be linear in terms of the detuning parameter [7].
The origin for this statement is that radiation power of the
bunched electron beam grows linearly with the undulator
length for very long undulator. However, the problem of
optimum matching of the electron beam into the regime of
coherent deceleration is still open. Practical calculations of
specific systems yielded in several empirical laws using dif-

ferent polynomial dependencies, application of tricks with
detuning jumps, etc (see [12, 13] and references therein).

In this paper we perform global analysis of the parame-
ter space of seeded FEL amplifier and derive universal law
of the undulator tapering defined by the only diffraction pa-
rameter.

BASIC RELATIONS
We consider axisymmetric model of the electron beam. It

is assumed that transverse distribution function of the elec-
tron beam is Gaussian, so rms transverse size of matched
beam is σ =

√
ϵ β ,where ϵ = ϵn/γ is rms beam emittance,

γ is relativistic factor, and β is focusing beta-function. In
the following we consider rectified case of the “cold” elec-
tron beam and neglect space charge effects. Under this as-
sumptions the FEL amplifier is described by the diffraction
parameter B [7], and detuning parameter Ĉ:

B = 2Γσ2ω/c , Ĉ = C/Γ , (1)

where Γ =
[
Iω2θ2s A2

JJ/(IAc2γ2
zγ)

]1/2
is the gain parameter,

C = 2π/λw −ω/(2cγ2
z ) is the detuning of the electron with

the nominal energy E0. In the following electron energy is
normalized as P̂ = (E − E0)/(ρE0), where ρ = cγ2

zΓ/ω is
the efficiency parameter1. The following notations are used
here: I is the beam current, ω = 2πc/λ is the frequency
of the electromagnetic wave, θs = Krms/γ, Krms is the rms
undulator parameter, γ−2

z = γ
−2 + θ2s , kw = 2π/λw is the

undulator wavenumber, IA = 17 kA is the Alfven current,
AJJ = 1 for helical undulator and AJJ = J0(K2

rms/2(1 +
K2

rms)) − J1(K2
rms/2(1 + K2

rms)) for planar undulator. Here
J0 and J1 are the Bessel functions of the first kind.

Equations, describing motion of the particles in the pon-
deromotive potential well of electromagnetic wave and un-
dulator get simple form when written down in normalized
form (see, e.g. [7]):

dΨ
dẑ
= Ĉ + P̂,

dP̂
dẑ
= U cos(ϕU + Ψ) , (2)

where ẑ = Γz, and U and ϕU are amplitude and phase of ef-
fective potential. Energy change of electrons is small in the
exponential stage of amplification, P̂ ≪ 1, and process of
electron bunching in phase Ψ lasts for long distance, ẑ ≫ 1.
Situation changes drastically when electron energy change
P̂ approaches to the unity. The change of phase on the scale
of ∆ẑ ≃ 1 becomes to be fast, particles start to slip in phase
Ψwhich leads to the debunching of the electron beam modu-
lation, and growth of the radiation power is saturated. opera-
tion. Undulator tapering [1], i.e. adjustment of the detuning

1 Note that it differs from 1-D definition by the factor B1/3 [7].
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according to the energy loss of electrons, Ĉ( ẑ) = −P̂( ẑ), al-
lows to keep synchronism of electrons with electromagnetic
wave and increase output power.

Radiation of Modulated Electron Beam
FEL radiation is coherent radiation of the electron beam

which is modulated at the resonance wavelength during am-
plification process. It is reasonable here to remember prop-
erties of the radiation of the modulated electron beam. Radi-
ation power of modulated beam in helical undulator is given
by [14]:

P =
πθ2sωI2

0 a2
inz

4πc2

[
arctan

(
1

2N

)
+ N ln

(
4N2

4N2 + 1

)]
, (3)

where ain is amplitude of modulation of the electron beam
current (I (z, t) = I0[1 + ain cosω(z/vz − t)]), and N =
kσ2/z is Fresnel number. We note here that expression (3)
is a crucial element for understanding the optimum law of
the undulator tapering. Indeed, in the deep tapering regime
some fraction of the particles is trapped in the regime of co-
herent deceleration. Thus, beam modulation is fixed, and
asymptotically radiation power should be described by (3).
One can easily find that both asymptotes of undulator ta-
pering discussed in the introductory section: 1D model of
(wide electron beam), and thin beam asymptote are well
described by this expression. Asymptote of wide electron
beam corresponds to large values of Fresnel number N , and
it follows from (3) that radiation power scales as P ∝ z2.
Asymptote of thin electron beam corresponds to small val-
ues of the Fresnel Number N , and radiation power becomes
linearly proportional to the undulator length, P ∝ z. Un-
dulator tapering should adjust detuning according to the
energy loss by electrons, and we find that tapering law
should be quadratic for the case of wide electron beam,
C ∝ −P ∝ z2, and linear - for the case of thin electron
beam, C ∝ −P ∝ z.
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Figure 1: Universal characteristics of FEL amplifier. Color
codes are: black - trapping efficiency Ktrap for globally
optimized undulator; red - fitting coefficient of global opti-
mization α−1

tap ; blue - FEL field gain ReΛ/Γ; green - FEL
efficiency in the saturation, ηsat = Psat/(ρPb ).

GLOBAL OPTIMIZATION
We start with global optimization of the parameter space.

Simulations have been performed with three-dimensional,
time-dependent FEL simulation code [15]. In the frame-
work of the accepted model (cold electron beam) both,
field gain ReΛ/Γ and efficiency in the saturation, ηsat =
Psat/(ρPb ) of the FEL amplifier tuned to exact resonance
are defined by the only diffraction parameter B (see Fig.1).
Operation of the FEL amplifier before saturation is also de-
fined by the diffraction parameter B. One can clearly ob-
serve this from Fig. 2. Here longitudinal coordinate is nor-
malized to the gain length Lg = 1/(ReΛ/Γ), and radiation
power is normalized to the saturation power. When amplifi-
cation process enters nonlinear stage, output power is func-
tion of two parameters, diffraction parameter and reduced
undulator length.

Now we come to the problem of efficiency increase with
undulator tapering. First, we solve this problem using ap-
proach of straightforward global optimization. The func-
tion of optimization is to find maximum of the output power
at the undulator length exceeding ten field gain lengths. We
divide undulator into many pieces and change detuning of
all pieces independently. We apply adiabatic (smooth) ta-
pering, i.e. we prevent jumps of the detuning on the bound-
ary of the sections. Number of sections is controlled to
be large enough to provide the result which is independent
on the number of sections. Then we choose tapering law
C(B, z) corresponding to the maximum power at the exit
of the whole undulator. This global optimization procedure
has been performed in the practically important range of
diffraction parameters from B = 1 to B = 40. Results of this
global optimization are summarized in Fig. 3. Ratio of the
normalized power to the normalized detuning gives us the
value of trapping efficiency of electrons into the regime of
coherent deceleration, Ktrap = P̂/Ĉ. This universal func-
tion of diffraction parameter B is plotted on Fig: 1. We find
that optimum trapping factor approaches values of 80% for
B = 1, and falls down to 45% for B = 40. It is interesting
to notice that for B & 5 it scales roughly as B−1/3, similar
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Figure 2: Evolution of the radiation power along the undula-
tor (untapered case). Color codes: black, red, green curves
correspond to the value of diffraction parameter B = 1, 10,
and 40.
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to other FEL characteristics like FEL gain and saturation
efficiency.

It comes from global optimization that in the whole pa-
rameter range undulator tapering starts from the value of
∆z ≃ 2Lg before saturation. This is not surprising if we
look on Fig. 2. Optimum undulator tapering should com-
pensate loss of the electron energy which is in fact follows
identical parametric dependence on the gain Lg for all val-
ues of diffraction parameter. Next observations come from
the analysis of the beam modulation. The first observation
is that the beam modulation at the initial stage of the non-
linear regime follows similar behavior for all diffraction pa-
rameters (see Fig. 4). This gives a hint that initial capture
of the particles is performed in a similar way in the whole
parameter range. The second observation is that the beam
modulation after trapping of the electrons to the coherent
deceleration process remains constant along the undulator,
and it is universal function of the diffraction parameter B
(see Fig. 4). This is gives us the main hint which we dis-
cussed in the previous section. I.e., excluding trapping tran-
sition stage, we deal with radiation of the modulated elec-
tron beam (3). Main essence of our study is to apply para-
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Figure 3: Evolution along the undulator of the output power
(solid curves) and detuning (dashed curves) for FEL am-
plifier with global optimization of the undulator tapering.
Color codes: black, red, green curves correspond to the
value of diffraction parameter B = 1, 10, and 40.
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Figure 4: Evolution along the undulator of the squared
value of the beam bunching for FEL amplifier with global
undulator tapering. Color codes: black, red, green curves
correspond to the value of diffraction parameter B = 1, 10,
and 40.
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Figure 5: Evolution along the undulator of the output power
(solid curves) and detuning (dashed curves) Color codes:
black - FEL with global optimization of undulator tapering,
red - fit with formula (4). Here the value of diffraction pa-
rameter is B = 10.

metrical dependence like (3) to fit optimum detuning pat-
tern in Fig. 3 such that condition of optimum tapering is
preserved:

Ĉ = αtap ( ẑ− ẑ0)
[
arctan

(
1

2N

)
+ N ln

(
4N2

4N2 + 1

)]
, (4)

with Fresnel number N fitted by N = βtap/( ẑ − ẑ0). Thus,
we try to fit optimum detuning with three parameters: z0,
αtap and βtap . Here undulator length is normalized to the
gain parameter, ẑ = Γz. One parameter of this fit, start of
the undulator tapering z0 is firmly fixed by the global opti-
mization procedure, z0 = zsat − 2Lg . Another parameter
of the problem, βtap , is rather well approximated with the
linear dependency on diffraction parameter, βtap = 10× B.
Remaining parameter, αtap is plotted in Fig. 1. It is slow
function of the diffraction parameter B, and scales approx-
imately to B1/3 as all other important FEL parameters pre-
sented in Fig. 1. Thus, application of similarity techniques
gives us an elegant way for general parametrical fit of such
complicated phenomena as optimum undulator tapering.
Actually, accuracy of this fit is pretty good giving the re-
sults for optimum detuning which are close to the global
optimum. We illustrate with Fig. 5 tapering law (4) for spe-
cific value of the diffraction parameter B = 10. Curves
in black color are normalized power and detuning derived
from global optimization. Red dashed curve is detuning Ĉ
given by (4) with αtap = 2.2 (see Fig. 1, and βtap = 100
(according to relation βtap = 10 × B). The solid curve in
red color is normalized FEL efficiency simulated using de-
tuning (4). We see good agreement of the fit with global
optimization. The same situation occurs in the whole range
of traced values of diffraction parameter B. Such a good
agreement is not surprising since fitting is based on very
clean parametric dependencies, and numerical simulations
just provided relevant numerical factors.

We finish our paper with illustration of the trapping pro-
cess. Trapping efficiency Ktrap = P̂/Ĉ is plotted in Fig. 1.
Trapping efficiency falls down with diffraction parameter B.
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Figure 6: Phase space distribution of electrons at different
stages of trapping process. Color codes correspond to dif-
ferent location of the particles in the beam (black - core of
the beam, blue - edge of the beam). Here diffraction param-
eter is B = 10. Top, middle, and bottom plots correspond
to (z− zsat )/Lg = 2.5, 3.9 and 5.3, respectively (sse Fig: 5).

This is natural consequence of diffraction effects discussed
earlier (see, e.g. [7], Chap. 4). For small value of the diffrac-
tion parameter B gradient of the field of the beam radiation
mode across the electron bunch is smaller than for large val-
ues of diffraction parameter. In the latter case we obtain
situation when electrons located in the core of the electron
beam are already fully bunched while electrons on the edge
of the beam are not bunched yet. As a result, number of
electrons with similar positions on the energy-phase plane
falls down with the growth of the diffraction parameter, as
well as trapping efficiency into the regime of coherent decel-
eration. The trapping process is illustrated with phase space
plots presented on Fig. 6 for the value of diffraction param-
eter B = 10. Top, middle, and bottom plots correspond
to the points of (z − zsat )/Lg = 2.5, 3.9 and 5.3 on Fig. 3.
Different color codes (black to blue) correspond to differ-
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Figure 7: Population of electrons in energy at different
stages of trapping process. Color codes correspond to dif-
ferent location of the particles in the beam (black - core of
the beam, blue - edge of the beam). Here diffraction param-
eter is B = 10. Top, middle, and bottom plots correspond
to (z− zsat )/Lg = 2.5, 3.9 and 5.3, respectively (sse Fig: 5).

ent locations of the particles across the beam (core to edge.
We see that particles in the core of bunch (black points) are
trapped most effectively. Nearly all particles located in the
edge of the electron beam (blue points) leave stability re-
gion very soon. Trapping process lasts for several field gain
length when trapped particles become to be isolated in the
trapped energy band for which undulator tapering is opti-
mized further. For specific value of the diffraction parame-
ter B = 10 it is not finished even at three field gain lengths
after saturation, and non-trapped particles continue to pop-
ulate low energy tail of the energy distribution (see Fig. 7).
Recently we have been invited to the discussion on the de-
tails of trapped particles distribution in the phase space ob-
served experimentally at LCLS [16]. Graphs presented in
Figs. 6 and 7 give a hint on the origin of energy bands which
are formed by non-trapped particles. This is consequence
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of nonlinear dynamics of electrons leaving the region of sta-
bility. Actually, similar effect can be seen in the early 1D
studies [5, 6].

DISCUSSION
In this paper we derived general law for optimum undu-

lator tapering in the presence of diffraction effects. Purified
case of “cold” electron has been considered. This allowed
us to isolate diffraction effects in the most clear form. It
has been found that universal function of the undulator ta-
pering depends on the only diffraction parameter. Tapering
law is described with simple analytical expression with two
fitting coefficients. Extension of this approach to practical
life (including energy spread and emittance) is pretty much
straightforward and will result in corrections to the fitting
coefficients without changing general law given by (4). The
same law is evidently applicable to SASE FEL as well with
relevant correction of fitting coefficients.
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