Keyword: status
Paper Title Other Keywords Page
MOP032 PAL-XFEL Magnet Power Supply System controls, power-supply, quadrupole, dipole 87
 
  • S.-H. Jeong, H.-S. Kang, D.E. Kim, I.S. Ko, H.-G. Lee, S.B. Lee, B.G. Oh, K.-H. Park, H.S. Suh, Y.G. Young-Gyu
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  This paper presents an overview of the magnet power supply(MPS) for the PAL-XFEL. The number of total MPS is 628 and they will be installed along the accelerator and the undulator sections. The power capacity of the MPS was ranging from about 1 A to 300 A. These MPSs were required to meet the high stability that was subjected from the beam dynamics specifications. This paper described the overall MPS requirements, MPS assembling, test process, control scheme, installation plan and so on.  
 
THP090 Femtosecond Timing Distribution for the European XFEL laser, timing, operation, FEL 945
 
  • C. Sydlo, M.K. Czwalinna, M. Felber, C. Gerth, T. Lamb, H. Schlarb, S. Schulz, F. Zummack
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Accurate timing synchronization on the femtosecond timescale is an essential installation for time-resolved experiments at free-electron lasers (FELs) such as FLASH and the upcoming European XFEL. To date the required precision levels can only be achieved by a laser-based synchronization system. Such a system has been successfully deployed at FLASH and is based on the distribution of femtosecond laser pulses over actively stabilized optical fibers. Albeit its maturity and proven performance this system had to undergo a major redesign for the upcoming European XFEL due to the enlarged number of stabilized optical fibers and an increase by a factor of up to 10 in length. The experience and knowledge gathered from the operation of the optical synchronization system at FLASH has led to an elaborate and modular precision instrument which can stabilize polarization maintaining fibers for highest accuracy as well as economic single mode fibers for shorter lengths. This paper reports on the laser-based synchronization system focusing on the active fiber stabilization units for the European XFEL, discusses major complications, their solutions and and the most recent performance results.  
 
THP093 Coherent Electron Cooling Proof of Principle Phase 1 Instrumentation Status detector, electron, instrumentation, electronics 956
 
  • D.M. Gassner, J.C. Brutus, R.L. Hulsart, V. Litvinenko, R.J. Michnoff, T.A. Miller, M.G. Minty, I. Pinayev, M. Wilinski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The purpose of the Coherent electron Cooling Proof-of- Principle (CeC PoP) [1] experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. The cooling facility will be installed inside the RHIC tunnel in 3 phases. The status of the instrumentation systems planned for phase 1 commissioning efforts will be described. This paper will also describe updates to the instrumentation systems proposed to meet the diagnostics challenges during the final phase of cooling commissioning [2]. These include measurements of beam intensity, emittance, energy spread, bunch length, position, and transverse alignment of electron and ion beams.