Keyword: instrumentation
Paper Title Other Keywords Page
MOP049 Oxygen Scintillation in the LCLS detector, controls, laser, electron 137
 
  • J.L. Turner, R.C. Field
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Oxygen is tested as a replacement for Nitrogen in the Gas Detector system in the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center. The attenuation and energy monitors for LCLS use Nitrogen, but for experiments at the Nitrogen K 1S energy of about 410eV this functionality is gone due to energy fluctuations above and below the K-edge. Oxygen was tested as a scintillating gas at 400eV and 8.3keV.
 
 
THP093 Coherent Electron Cooling Proof of Principle Phase 1 Instrumentation Status detector, electron, status, electronics 956
 
  • D.M. Gassner, J.C. Brutus, R.L. Hulsart, V. Litvinenko, R.J. Michnoff, T.A. Miller, M.G. Minty, I. Pinayev, M. Wilinski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The purpose of the Coherent electron Cooling Proof-of- Principle (CeC PoP) [1] experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. The cooling facility will be installed inside the RHIC tunnel in 3 phases. The status of the instrumentation systems planned for phase 1 commissioning efforts will be described. This paper will also describe updates to the instrumentation systems proposed to meet the diagnostics challenges during the final phase of cooling commissioning [2]. These include measurements of beam intensity, emittance, energy spread, bunch length, position, and transverse alignment of electron and ion beams.