Contact: Chia-Hsiang Chen E-mail:chiahsiang@mx.nthu.edu.tw **NTHU, High energy OPtics & Electronics Laboratory** No.101, Section 2, Kuang-Fu Road, Hsinchu, **Taiwan 30013, R.O.C**

Broadly tunable THz FEL amplifier

Chia-Hsiang Chen¹, Yi-Kai Gan², Yu-Chung Chiu¹, Fu-Han Chao², Kuan-Yan Huang¹, Yi-Chu Wang², Yen-Chieh Huang ^{1,2}

HOPE Lab., ¹Department of Electrical Engineering/²Department of Physics, National Tsinghua University, Hsinchu 30013, Taiwan Beam Dynamics Group,³National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

Abstract

In this paper we present a broadly tunable high-power THz FEL amplifier driven by a photoinjector with a seed source tunable between 0.7-2.0 THz. A fully synchronized THz seed pulse is provided by an optical parametric amplifier pumped by the very driver laser of the electron injector. The FEL amplification gain is almost 3000 at 2 THz for nominal beam parameters.

Introduction

In this paper, we propose a 4.5-m long FEL system with a tunable frequency in THz range (0.7 to 2.0 THz). This compact FEL consists of a phtocathode RF gun (PG), an emittance compensated solenoid magnet and a 2-m long planer undulator. The compensated electron bunches are modulated by the fields in the RF gun and the solenoid magnet before entering the undulator. The tunable THz seeding is generated by an optical parametric amplifier (OPA), and the single pass electron bunch radiates coherently with a frequency the same as that of the seeding laser. The proposed FEL can be regarded as a THz FEL amplifier, its radiation frequency can be adjusted by tuning the beam energy and seeding laser frequency.

Single-pass planar undulator

Photocathode

photoinjector		
Charge, Q (pC)	500	
Accel. Field E _p (MV/m)	72 ~ 120	
Solenoid strength (Tesla)	0.14 ~ 0.21	-
beam at the entrance of undulator (1.45 m)		
Beam energy (MeV)	3.3 ~ 5.5	
Bunch length (rms), σ _t (ps)	~ 10	0
Energy spread (rms), σ_{γ} (%)	1.6 ~ 4.2	ctor
Peak current, I _p (A)	~ 100	ng fa
Emittance, ε _{nx} (πmm-mrad)	3.1 ~ 3.5	0 ochir
Beam size, σ _x (μm)	< 500	bur
Seeding power (W)	1 ~ 1000	0
Fundamental radiation frequency (THz)	0.7~2.0	

undulator		
Туре	Planar	
Total length (m)	2	
Period length (cm)	1.8	
Period number	110	
RMS undulator	0.98	
parameter (K)	0.70	

Parameters in the beam line

Fig. 1: The hardware arrangement of the proposed THz FEL amplifier. (planar undulator)

Fig. 3: Variation of the bunching factors in the undulator with 1 kW seed power at 0.7, 1.4, and 2.0 THz. (Results obtained from simulation in GENESIS)

Fig. 2: Configuration of a proposed TPA to seed the FEL undulator. (the right curve shows the calculated gain coefficient for the proposed TPA with 1 GW/cm2 pumping intensity at 1064 nm.)

Fig. 4 (a) Radiation power vs. undulator length at 0.7, 1.4, and 2.0 THz with 1 kW seeding power. Inset: radiation spectrum at 2 THz. Build-up of FEL powers at (b) 0.7, (c) 1.4, and (d) 2.0 THz with different seeding powers to the undulator. A higher seeding power helps to quickly build up the FEL output.