Keyword: photon
Paper Title Other Keywords Page
MOA03 First Lasing at FLASH2 undulator, electron, operation, laser 7
 
  • S. Schreiber, B. Faatz
    DESY, Hamburg, Germany
 
  FLASH, the free-electron laser user facility at DESY (Hamburg, Germany), has been upgraded with a second undulator beamline FLASH2. The installation of the FLASH2 electron beamline, including twelve variable gap undulators, was finalized early 2014, and beam commissioning of the new beamline started in March 2014. We announce first lasing at FLASH2 achieved at a wavelength of 40 nm on August 20, 2014.  
slides icon Slides MOA03 [3.896 MB]  
 
MOP001 Particle Tracking Simulations for EXFEL Complex shape Collimators electron, radiation, simulation, lattice 22
 
  • V.G. Khachatryan, V.H. Petrosyan, T.L. Vardanyan
    CANDLE SRI, Yerevan, Armenia
 
  The study sets the objective to investigate through numerical simulation the produced secondary radiation properties when the electron beam particles hit collimator walls. Using particle tracking simulation code FLUKA, the European XFEL electron beam as well as beam halo interaction with the collimator were simulated. The complex geometrical shape and material composition of the collimator have been taken into account. Absorbed dose spatial distribution in the material of the collimators and particle fluencies from the downstream surface of the collimator were simulated for the total secondary radiation and its main components.  
 
MOP010 The Photon Beam Loss Monitors as a Part of Equipment Protection System at European XFEL detector, vacuum, radiation, beam-transport 37
 
  • N. Gerasimova, H. Sinn
    XFEL. EU, Hamburg, Germany
  • S. Dziarzhytski, R. Treusch
    DESY, Hamburg, Germany
 
  For the X-ray beam transport systems, the problem of potential damage to the equipment by mis-steered photon beam emerged with advent of powerful X-ray FELs. In particular high repetition rate machines as European XFEL, where not only focused beam can produce ablation, but even unfocused beam can melt the beamline components while machine operates in multibunch mode, demand for implementation of equipment protection. Here we report on development of photon beam loss monitors at European XFEL facility. The photon beam loss monitors will react on the mis-steered photon beam and interface the machine protection system. The prototype comprises the vacuum chamber with fluorescence crystals positioned outside the photon beampath. The fast sub-hundred ns fluorescence induced by mis-steered beam can be detected by photomultiplier tube allowing for intra-train reaction of machine protection system. First tests have been carried out at FLASH and shown the feasibility of detection based on PMT-detected fluorescence. In addition to efficient YAG:Ce crystal, the robust low-Z material as CVD microcrystalline diamonds has shown a potential to be used as fluorescence crystals.  
 
MOP012 Implementation Phase of the European XFEL Photon Diagnostics diagnostics, undulator, FEL, electron 41
 
  • J. Grünert, J. Buck, F. Dietrich, W. Freund, A. Koch, M. Planas
    XFEL. EU, Hamburg, Germany
 
  The European XFEL facility with 3 undulators and initially 6 experimental end-stations requires an extensive set of photon beam diagnostics for commissioning and user operation, capable of handling the extreme brilliance and its inherent damage potential, and the high intra bunch train repetition rate of 4.5MHz, potentially causing additional damage by high heat loads and making shot-to-shot diagnostics very demanding [1]. After extensive design [2-4] and prototype studies, in 2014 the installation of the photon beam devices starts with the equipment in the first photon tunnel XTD2 which is where the SASE1 hard X-ray undulator is located. This contribution reports on the device construction progress by focusing on the XTD2 tunnel devices and their implementation into the tunnel environment. [1] J.Grünert, Framework for X-Ray Photon Diagnostics at the European XFEL, TR-2012-003, 04/2012 [2] J.Buck, Online Photoemission Time-of-Flight Spectrometer for X-ray Photon Diagnostics, TR-2012-002, 06/2012 [3] C.Ozkan, Conceptual design report for Imaging Stations at the European XFEL, TR-2012-004, 02/2012 [4] W.Freund, The European XFEL Undulator Commissioning Spectrometer, XFEL. EU 05/2011  
 
MOP014 X-ray Photon Temporal Diagnostics for the European XFEL diagnostics, brilliance, electron, laser 45
 
  • J. Liu, J. Buck, F. Dietrich, W. Freund, J. Grünert, M. Meyer
    XFEL. EU, Hamburg, Germany
 
  European XFEL (XFEL. EU) that will commissioning in 2016 shows great features on its extremely high number of light bullets (27000 p/s) and extremely high average brilliance. The FEL pulses in XFEL. EU are produced in a 10 Hz bunch trains that contains 2700 sub-pulses within the 600 μs time intervals, corresponding to a 220 ns sub-pulse separation and 4.5 MHz repetition rate. Characterizing the temporal properties of the high repetition rate FEL pulses that implicitly different from shot to shot is important for “pump and probe” experiments and data interpretation. Here we report the concept and recent progress about temporal diagnostic for XFEL. EU. THz streaking technique and spectral encoding will be implemented considering the high repetition rate and high brilliance of XFEL. EU. Laser based THz generation, optimization and numerical simulation for streaking FEL electrons with different photon energies will be presented. High repetition rate diagnostic requirements and solutions will also be discussed.  
 
MOP018 Conceptual Study of a Self-seeding Scheme at FLASH2 undulator, FEL, electron, simulation 53
 
  • T. Plath, L.L. Lazzarino
    Uni HH, Hamburg, Germany
  • K.E. Hacker
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K1GU4 and 05K10PE1 and the German Research Foundation program graduate school 1355.
We present a conceptual study of a self-seeding installation at the new FEL beamline, FLASH2, at the free-electron laser at DESY, Hamburg. For self-seeding, light from a first set of undulators is filtered by a monochromator and thus acts as a seed for the gain process in the main undulator. This scheme has been tested at LCLS at SLAC with a diamond monochromator for hard X-rays and with a grating monochromator for soft X-rays covering energies between 700 and 1000 eV. For such a design to offer benefits at FLASH2, it must be modified to work with X-rays with wavelength of about 5 nm (248 eV) where the damage threshold of the monochromator in the setup and the divergence at longer wavelengths become an issue. An analysis of the potential performance and limitations of this setup is performed using GENESIS 1.3 and a method developed for the soft X-ray self-seeding experiment at the European XFEL. With a total of 9 undulators in the first stage and 8 undulators after the monochromator, a pulse energy contrast ratio of 4.5 was simulated with an initial peak current of 2.5 kA.
 
 
MOP020 Compact Spectrometer for Single Shot X-ray Emission and Photon Diagnostics FEL, target, synchrotron, diagnostics 62
 
  • F. Frassetto, P. Miotti, L. P. Poletto
    CNR-IFN, Padova, Italy
  • M. Coreno
    CNR-IMIP, Monterotondo Stazione RM, Italy
  • A. Di Cicco, F. Iesari
    Università di Camerino, Camerino, Italy
  • P. Finetti, E. Giangrisostomi, R. Mincigrucci, E. Principi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C. Grazioli
    Universita Degli Studi di Trieste, Trieste, Italy
  • A. Kivimaki
    IOM-CNR, Trieste, Italy
  • S. Stagira
    CNR-IFN & Dipartimento di Fisica - Politecnico di Milano, Milano, Italy
  • S. Stagira
    Politecnico/Milano, Milano, Italy
 
  The design and characterization of a compact spectrometer realized for photon in-photon out experiments (in particular X-Ray Emission Spectroscopy), conceived to be used at the FERMI free-electron-laser (FEL) at ELETTRA (Italy) is here presented. The instrument can be easily installed on different end stations at variable distances from the target area both at synchrotron and FEL beamlines. Different input sections can be accommodated in order to fit the experimental requests. The design is compact in order to realize a portable instrument within an overall size of less than one square meter. The spectrometer covers the 25-800 eV spectral range, with spectral resolution better than 0.2%. The characterization on Gas Phase @ ELETTRA as instrument for XES and some experimental data of the FEL emission acquired at EIS-TIMEX @ FERMI, where the instrument has been used for photon beam diagnostics, are introduced.  
 
MOP038 Characterization of the Undulator Magnetic Field Quality by the Angle Averaged Radiation Spectrum undulator, radiation, electron 100
 
  • O.A. Shevchenko, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • N. Vinokurov
    KAERI, Daejon, Republic of Korea
 
  The real undulator magnetic field always contains errors which influence undulator performance. The effect of these errors is usually characterized by broadening of the spontaneous emission spectrum at zero angle and corresponding reduction of the spectral intensity. This approach works very well for the phase errors while it does not take into account transversal trajectory displacements. The integrated over the angles radiation spectrum contains more complete information about the undulator field quality but its calculation requires more effort. Therefore the spectral density of emitted radiation (the total number of emitted photons with given energy) can be considered as a figure of merit for an undulator. In this paper we derive analytical formula for this spectrum suitable for doing efficient numerical calculations and demonstrate its application to the case of some typical undulator field errors.  
 
MOP040 General Strategy for the Commissioning of the ARAMIS Undulators with a 3 GeV Electron Beam undulator, electron, alignment, quadrupole 107
 
  • M. Calvi, M. Aiba, M. Brügger, S. Danner, R. Ganter, R. Ischebeck, L. Patthey, T. Schietinger, T. Schmidt
    PSI, Villigen PSI, Switzerland
 
  The commissioning of the first SwissFEL undulator line (Aramis) is planned for the beginning of 2017. Each undulator is equipped with a 5-axis camshaft system to remotely adjust its position in the micrometer range and a gap drive system to set K-values between 0.1 and 1.8. In the following paper the beam-based alignment of the undulator with respect to the golden orbit, the definition of look-up tables for the local correction strategy (minimization of undulator field errors), the fine-tuning of the K-values as well as the setting of the phase shifters are addressed. When applicable both electron beam and light based methods are presented and compared.  
 
MOP041 Summary of the U15 Prototype Magnetic Performance undulator, vacuum, electron, quadrupole 111
 
  • M. Calvi, M. Aiba, M. Brügger, S. Danner, R. Ganter, C. Ozkan, T. Schmidt
    PSI, Villigen PSI, Switzerland
 
  The first undulator prototype (U15) was assembled and magnetically tested. The instrumentation and the algorithms developed for the undulator optimization are presented and a comparison among different approaches is reviewed. The magnetic measurement results before and after the installation of the vacuum components are discussed. The summary of the undulator test with 100 MeV electron beam is presented and the impact of the radiation on the magnetics is addressed.  
 
MOP054 Harmonic Lasing Options for LCLS-II undulator, electron, radiation, FEL 148
 
  • G. Marcus, Y. Ding, Z. Huang, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • G. Penn
    LBNL, Berkeley, California, USA
 
  Harmonic lasing can be a cheap and relatively efficient way to extend the photon energy range of a particular FEL beamline. Furthermore, in comparison to nonlinear harmonics, harmonic lasing can provide a beam that is more intense, stable, and narrow-band. This paper explores the application of the harmonic lasing concept at LCLS-II using various combinations of phase shifters and attenuators. In addition, a scheme by which individual undulator modules are tuned to amplify either the third or fifth harmonic in different configurations is presented in detail.  
 
MOP056 SASE Characteristics from Baseline European XFEL Undulators in the Tapering Regime electron, undulator, radiation, FEL 159
 
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
  • G. Feng, V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
 
  The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime.  
 
MOP068 Suppression of the Fundamental Frequency for a Successful Harmonic Lasing in SASE FELs undulator, FEL, electron, simulation 215
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Harmonic lasing in X-ray FELs has recently attracted a significant attention and is now seriously considered as a potential method for generation of brilliant photon beams at short wavelengths. It is clear, however, that for a successful harmonic lasing one has to suppress the fundamental. In this paper we discuss different methods for such a suppression: phase shifters, intraundulator spectral filtering, switching between the 3rd and the 5th harmonics etc.  
 
MOP082 Perspectives for Imaging Single Protein Molecules with the Present Design of the European XFEL electron, laser, free-electron-laser, FEL 238
 
  • G. Geloni
    XFEL. EU, Hamburg, Germany
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • O. Yefanov
    CFEL, Hamburg, Germany
 
  European XFEL aims to support imaging and structure determination of biological specimens between less than 0.1 microns and 1 micron size with working photon energies between 3 keV and 16 keV. This wide operation range is a cause for challenges to the focusing optics. A long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. Due to the large divergence of nominal X-ray pulses with durations shorter than 10 fs, one suffers diffraction from mirror apertures, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which seem ideal for imaging of single biomolecules. Moreover, the nominal SASE1 is very far from the level required for single particle imaging. Here we show how it may be possible to optimize the SPB instrument for single biomolecule imaging with minimal additional costs and time, achieving diffraction without destruction at near-atomic resolution with 1013 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 1023 ph/cm2. This result is exemplified using the RNA Pol II molecule as a case study.  
 
MOP092 X-ray Monochromators for Self-seeding XFELs in the Photon Energy Range Starting from 1.5 keV FEL, scattering, electron, radiation 269
 
  • Yu. Shvyd'ko
    ANL, Argonne, Ilinois, USA
 
  Self-seeding of XFELs below 1 keV can be performed using grating monochromators [1]. Forward-Bragg diffraction (wake) monochromators [2] were instrumental for achieving self-seeding in hard x-ray FELs in the photon energy range from 5 to 10 keV [3]. Large photo-absorption makes extension into the lower photon range difficult. Here alternative schemes of x-ray monochromators are introduced and discussed for achieving self-seeding in a yet inaccessible spectral range starting from 1.5 keV.
[1] J. Feldhaus, et al., Opt. Commun. 140, 341 (1997).
[2]. G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011).
[3] J. Amann, et al., Nat. Photonics 6, 693 (2012).
 
 
TUP002 Characterization of Partially Coherent Ultrashort FEL Pulses FEL, laser, electron, free-electron-laser 346
 
  • C. Bourassin-Bouchet, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • C. Evain
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
 
  Temporal metrology is a major need for free-electron lasers. However, the lack of longitudinal coherence, that is shot-to-shot fluctuations, of these sources has prevented so far the full amplitude and phase temporal characterization of FEL pulses. To sort out this issue, we propose a solution inspired from attosecond metrology, where XUV pulse measurement techniques already exist, and from coherent diffraction imaging, where numerical solutions have been developed for processing partially coherent diffraction patterns. The experimental protocole implies the measurement of photoelectron spectra obtained through XUV-laser photoionisation. The spectra are then processed with an algorithm in order to retrieve the partially coherent FEL pulse. When applied to SASE FELs, the technique gives access to the full statistics of the emitted pulses. With seeded-FELs, the pulse shape becomes stable from shot-to-shot, but an XUV-laser time jitter remains. In that case, the technique enables the joint measurement of the FEL pulse shape (in amplitude and phase) and of the laser/FEL jitter envelope. The concept has been validated with numerical simulations in the context of the LUNEX5 FEL project.  
 
TUP003 Quantum FEL II: Many-electron Theory electron, FEL, laser, resonance 348
 
  • P. Kling, R. Sauerbrey
    HZDR, Dresden, Germany
  • R. Endrich, E.A. Giese, W.P. Schleich
    Uni Ulm, Ulm, Germany
 
  We investigate the emergence of the quantum regime of the FEL when many electrons interact simultaneously with the wiggler and the laser field. We find the Quantum FEL as the limit where only two momentum states are populated by the electrons. Moreover, we obtain exponential gain-per-pass and start-up from vacuum.  
 
TUP004 Quantum FEL I: Multi-mode Theory electron, resonance, coupling, FEL 353
 
  • R. Endrich, E.A. Giese, W.P. Schleich
    Uni Ulm, Ulm, Germany
  • P. Kling, R. Sauerbrey
    HZDR, Dresden, Germany
 
  The quantum regime of the FEL in a single-mode, single-particle approximation is characterized by a two-level behaviour of the center-of-mass motion of the electrons. We extend this model to include all modes of the radiation field and analyze the effect of spontaneous emission. In particular, we investigate this scattering mechanism to derive experimental conditions for realizing an FEL in the quantum regime.  
 
TUP054 Status of Electron Beam Slicing Project at NSLS-II, BNL electron, radiation, storage-ring, linac 496
 
  • A. He, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The Electron Beam Slicing (e-beam slicing) at NSLS-II, Brookhaven National Laboratory, supported by the Laboratory Directed Research and Development (LDRD) Program, is focused on the development of the new method to generate ultra-short x-ray pulses using focused short low energy (∼20 MeV) electron bunches to create short slices of electrons from the circulating electron bunches in a synchrotron radiation storage ring. The e-beam slicing activities are staged in 3 main phases. In Phases 0, the theory of e-beam slicing is developed, the low energy linac compressor is simulation designed, the radiation separation between the satellite and core is analyzed by simulation and the properties of the e-beam slicing system are discussed and compared with other ultra-short x- ray sources. Phase 0 has completed successfully, Phase 1 is under way. This paper presents an update on the status of Phase 0.  
 
TUP097 Fast, Multi-band Photon Detectors based on Quantum Well Devices for Beam-monitoring in New Generation Light Sources detector, laser, monitoring, electron 600
 
  • T. Ganbold
    University of Trieste, School of Nanotechnology, Trieste, Italy
  • M. Antonelli, G. Cautero, R. Cucini, D.M. Eichert, W.H. Jark, R.H. Menk
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. Biasiol
    IOM-CNR, Trieste, Italy
 
  In order to monitor the photon-beam position for both diagnostics and calibration purposes, we have investigated the possibility to use InGaAs/InAlAs Quantum Well (QW) devices as position-sensitive photon detectors for Free-Electron Laser (FEL) or Synchrotron Radiation (SR). Owing to their direct, low-energy band gap and high electron mobility, such QW devices may be used also at Room Temperature (RT) as fast multi-band sensors for photons ranging from visible light to hard X-rays. Moreover, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. Segmented QW sensors have been preliminary tested with 100-fs-wide UV laser pulses and X-ray SR. The reported results indicate that these devices respond with 100-ps rise-times to ultra-fast UV laser pulses. Besides, X-ray tests have shown that these detectors are sensitive to beam position and exhibit a good efficiency in the collection of photo-generated carriers.  
 
TUC01 Hard X-ray Self-Seeding Setup and Results at SACLA undulator, electron, FEL, radiation 603
 
  • T. Inagaki, N. Adumi, T. Hara, T. Ishikawa, R. Kinjo, H. Maesaka, Y. Otake, H. Tanaka, T. Tanaka, K. Togawa, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Goto, Y. Inubushi, T.K. Kameshima, T. Ohata, K. Tono
    JASRI/SPring-8, Hyogo, Japan
  • T. Hasegawa, S. Tanaka
    SES, Hyogo-pref., Japan
  • H. Kimura, A. Miura, H. Ohashi, H. Yamazaki
    Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Hyogo, Japan
 
  In order to improve the spectral and temporal properties of XFEL, the self-seeding option based on the transmission crystal optics has been implemented in SACLA since 2012. The self-seeding setup composed of four dipole magnets that can generate up to 50 fs temporal delay and a diamond single crystal with the thickness of 180 micro-m has been installed at the position of the 9th undulator segment, which has been moved downstream. In 2013, the installation of all the components has been completed in August and the commissioning has been started in October. After a number of tuning processes such as the beam collimation and undulator K-value optimization, significant spectral narrowing has been confirmed at 10 keV with the C(400) Bragg reflection. The spectral bandwidth of seeded FEL is about 3 eV, which is nearly one order narrower than that of SASE measured without the diamond crystal. The peak spectral intensity of seeded FEL is about 5 times higher than that of SASE. Systematic optimization on beam properties is now in progress towards experimental use of seeded XFELs. This talk gives the overview of the plan, achieved results and ongoing R&D.  
slides icon Slides TUC01 [20.337 MB]  
 
WEB03 European XFEL Construction Status undulator, electron, laser, diagnostics 623
 
  • W. Decking
    DESY, Hamburg, Germany
  • F. Le Pimpec
    XFEL. EU, Hamburg, Germany
 
  The European XFEL is presently constructed in the Hamburg region, Germany. It aims at producing X-rays in the range from 260 eV up to 24 keV out of three undulators that can be operated simultaneously with up to 27000 pulses/second. The FEL is driven by a 17.5 GeV linear accelerator based on TESLA-type superconducting accelerator modules. This paper presents the status of major components, the present project schedule and a summary of beam parameters that are adapted to the evolving needs of the users.  
slides icon Slides WEB03 [12.982 MB]  
 
WEB05 FLASH: First Soft X-ray FEL Operating Two Undulator Beamlines Simultaneously electron, operation, laser, undulator 635
 
  • K. Honkavaara, B. Faatz, J. Feldhaus, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH, the free electron laser user facility at DESY (Hamburg, Germany), has been upgraded with a second undulator beamline FLASH2. After a shutdown to connect FLASH2 to the FLASH linac, FLASH1 is back in user operation since February 2014. Installation of the FLASH2 electron beamline has been completed early 2014, and the first electron beam was transported into the new beamline in March 2014. The commissioning of FLASH2 takes place in 2014 parallel to FLASH1 user operation. This paper reports the status of the FLASH facility, and the first experience of operating two FEL beamlines.  
slides icon Slides WEB05 [2.481 MB]  
 
THA01 THz Streak Camera for FELTemporal Diagnostics: Concepts and Considerations electron, FEL, laser, free-electron-laser 640
 
  • P.N. Juranic, R. Abela, I. Gorgisyan, C.P. Hauri, R. Ischebeck, B. Monoszlai, L. Patthey, C. Pradervand, M. Radovic, L. Rivkin, V. Schlott, A.G. Stepanov
    PSI, Villigen PSI, Switzerland
  • I. Gorgisyan, C.P. Hauri, L. Rivkin
    EPFL, Lausanne, Switzerland
  • R. Ivanov, P. Peier
    DESY, Hamburg, Germany
  • J. Liu
    XFEL. EU, Hamburg, Germany
  • B. Monoszlai
    University of Pecs, Pécs, Hungary
  • K. Ogawa, T. Togashi, M. Yabashi
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Owada
    JASRI/RIKEN, Hyogo, Japan
 
  The accurate, non-destructive measurements of FEL pulse length and arrival time relative to an experimental laser are necessary for operators and users alike. The FEL operators can get a better understanding of their machine and the optics of an FEL by examining the pulse length changes of the photons coming to the user stations, and the users can use the arrival time and pulse length information to better understand their data. PSI has created the pulse arrival and length monitor (PALM) based on the THz-streak camera concept for measurement at x-ray FELs, meant to be used at the upcoming SwissFEL facility. The first results from the experimental beamtime at SACLA will be presented, showcasing the accuracy and reliability of the device. Further plans for improvement and eventual integration into SwissFEL will also be presented.  
slides icon Slides THA01 [5.798 MB]  
 
THB01 Simultaneous Measurement of Electron and Photon Pulse Duration at FLASH electron, laser, free-electron-laser, FEL 654
 
  • S. Düsterer
    DESY, Hamburg, Germany
 
  One of the most challenging tasks for extreme ultraviolet, soft and hard X-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. In a larger campaign nine different methods, which are able to determine such ultrashort photon pulse durations were compared at FLASH. Radiation pulses at a wavelength of 13.5 nm and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations and energy modulations of the electron bunch, and also direct methods like autocorrelation techniques, THz streaking or reflectivity changes of solid state samples.  
slides icon Slides THB01 [4.520 MB]  
 
THP060 Design of a Spatio-temporal 3-D Ellipsoidal Photo Cathode Laser System for the High Brightness Photo Injector PITZ laser, electron, cathode, simulation 878
 
  • T. Rublack, J.D. Good, M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: German Federal Ministry of education and Research, project 05K10CHE “Development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses” and RFBR grant 13-02-91323.
Minimized emittance is crucial for improved operation of linac-based free electron lasers. Simulations have thus shown 3-D ellipsoidal photocathode laser pulses are superior to the standard Gaussian or cylindrical laser pulses in this manner. Therefore, in collaboration with the Joint Institute of Nuclear Research (JINR, Dubna, Russia) and the Photo Injector Test facility at DESY, Zeuthen (PITZ), a prototype system capable of producing spatio-temporal 3-D ellipsoidal pulses has been constructed at the Institute of Applied Physics (IAP, Nizhny Novgorod, Russia). The system consists of a dual-output, 1030 nm fiber laser coupled with disc amplifiers, a scheme based on Spatial Light Modulators for spatial and temporal pulse shaping of the primary output, a cross-correlator set up utilizing the secondary output to characterize the primary output, and finally frequency conversion to the UV. A preliminary, temporal ellipsoidal shaped IR pulse has been observed and measured so far at IAP RAS. As of writing, improvements and refinements of the system are ongoing and it is expected to replicate the finalized prototype at PITZ soon.
 
 
FRA02 Wave-Mixing Experiments with Multi-colour Seeded FEL Pulses experiment, FEL, laser, polarization 985
 
  • F. Bencivenga, A. Battistoni, F. Capotondi, R. Cucini, M.B. Danailov, G. De Ninno, M. Kiskinova, C. Masciovecchio
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The extension of wave-mixing experiments in the extreme ultraviolet (EUV) and x-ray spectral range represents one of the major breakthroughs for ultrafast x-ray science. Essential prerequisites to develop such kind of non-linear coherent methods are the strength of the input fields, comparable with the atomic field one, as well as the high temporal coherence and stability of the photon source(s). These characteristics are easily achievable by optical lasers. Seeded free-electron-lasers (FELs) are similar in many respects to conventional lasers, hence calling for the development of wave-mixing methods. At the FERMI seeded FEL facility this ambitious task is tackled by the TIMER project, which includes the realization of a dedicated experimental end-station. The wave-mixing approach will be initially used to study collective atomic dynamics in disordered systems and nanostructures, through transient grating (TG) experiments. However, the wavelength and polarization tunability of FERMI, as well as the possibility to radiate multi-colour seeded FEL pulses, would allow to expand the range of possible scientific applications.  
slides icon Slides FRA02 [7.731 MB]